You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zbdt05.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. *> \brief \b ZBDT05
  2. * =========== DOCUMENTATION ===========
  3. *
  4. * Online html documentation available at
  5. * http://www.netlib.org/lapack/explore-html/
  6. *
  7. * Definition:
  8. * ===========
  9. *
  10. * SUBROUTINE ZBDT05( M, N, A, LDA, S, NS, U, LDU,
  11. * VT, LDVT, WORK, RESID )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER LDA, LDU, LDVT, N, NS
  15. * DOUBLE PRECISION RESID
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION S( * )
  19. * COMPLEX*16 A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
  20. * ..
  21. *
  22. *> \par Purpose:
  23. * =============
  24. *>
  25. *> \verbatim
  26. *>
  27. *> ZBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD:
  28. *> S = U' * B * V
  29. *> where U and V are orthogonal matrices and S is diagonal.
  30. *>
  31. *> The test ratio to test the singular value decomposition is
  32. *> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
  33. *> where VT = V' and EPS is the machine precision.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The number of rows of the matrices A and U.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] N
  46. *> \verbatim
  47. *> N is INTEGER
  48. *> The number of columns of the matrices A and VT.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] A
  52. *> \verbatim
  53. *> A is COMPLEX*16 array, dimension (LDA,N)
  54. *> The m by n matrix A.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] LDA
  58. *> \verbatim
  59. *> LDA is INTEGER
  60. *> The leading dimension of the array A. LDA >= max(1,M).
  61. *> \endverbatim
  62. *>
  63. *> \param[in] S
  64. *> \verbatim
  65. *> S is DOUBLE PRECISION array, dimension (NS)
  66. *> The singular values from the (partial) SVD of B, sorted in
  67. *> decreasing order.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] NS
  71. *> \verbatim
  72. *> NS is INTEGER
  73. *> The number of singular values/vectors from the (partial)
  74. *> SVD of B.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] U
  78. *> \verbatim
  79. *> U is COMPLEX*16 array, dimension (LDU,NS)
  80. *> The n by ns orthogonal matrix U in S = U' * B * V.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDU
  84. *> \verbatim
  85. *> LDU is INTEGER
  86. *> The leading dimension of the array U. LDU >= max(1,N)
  87. *> \endverbatim
  88. *>
  89. *> \param[in] VT
  90. *> \verbatim
  91. *> VT is COMPLEX*16 array, dimension (LDVT,N)
  92. *> The n by ns orthogonal matrix V in S = U' * B * V.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDVT
  96. *> \verbatim
  97. *> LDVT is INTEGER
  98. *> The leading dimension of the array VT.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WORK
  102. *> \verbatim
  103. *> WORK is COMPLEX*16 array, dimension (M,N)
  104. *> \endverbatim
  105. *>
  106. *> \param[out] RESID
  107. *> \verbatim
  108. *> RESID is DOUBLE PRECISION
  109. *> The test ratio: norm(S - U' * A * V) / ( n * norm(A) * EPS )
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \ingroup double_eig
  121. *
  122. * =====================================================================
  123. SUBROUTINE ZBDT05( M, N, A, LDA, S, NS, U, LDU,
  124. $ VT, LDVT, WORK, RESID )
  125. *
  126. * -- LAPACK test routine --
  127. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  128. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129. *
  130. * .. Scalar Arguments ..
  131. INTEGER LDA, LDU, LDVT, M, N, NS
  132. DOUBLE PRECISION RESID
  133. * ..
  134. * .. Array Arguments ..
  135. DOUBLE PRECISION S( * )
  136. COMPLEX*16 A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
  137. * ..
  138. *
  139. * ======================================================================
  140. *
  141. * .. Parameters ..
  142. DOUBLE PRECISION ZERO, ONE
  143. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  144. COMPLEX*16 CZERO, CONE
  145. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  146. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  147. * ..
  148. * .. Local Scalars ..
  149. INTEGER I, J
  150. DOUBLE PRECISION ANORM, EPS
  151. * ..
  152. * .. Local Arrays ..
  153. DOUBLE PRECISION DUM( 1 )
  154. * ..
  155. * .. External Functions ..
  156. LOGICAL LSAME
  157. INTEGER IDAMAX
  158. DOUBLE PRECISION DASUM, DZASUM, DLAMCH, ZLANGE
  159. EXTERNAL LSAME, IDAMAX, DASUM, DZASUM, DLAMCH, ZLANGE
  160. * ..
  161. * .. External Subroutines ..
  162. EXTERNAL ZGEMM
  163. * ..
  164. * .. Intrinsic Functions ..
  165. INTRINSIC ABS, DBLE, MAX, MIN
  166. * ..
  167. * .. Executable Statements ..
  168. *
  169. * Quick return if possible.
  170. *
  171. RESID = ZERO
  172. IF( MIN( M, N ).LE.0 .OR. NS.LE.0 )
  173. $ RETURN
  174. *
  175. EPS = DLAMCH( 'Precision' )
  176. ANORM = ZLANGE( 'M', M, N, A, LDA, DUM )
  177. *
  178. * Compute U' * A * V.
  179. *
  180. CALL ZGEMM( 'N', 'C', M, NS, N, CONE, A, LDA, VT,
  181. $ LDVT, CZERO, WORK( 1+NS*NS ), M )
  182. CALL ZGEMM( 'C', 'N', NS, NS, M, -CONE, U, LDU, WORK( 1+NS*NS ),
  183. $ M, CZERO, WORK, NS )
  184. *
  185. * norm(S - U' * B * V)
  186. *
  187. J = 0
  188. DO 10 I = 1, NS
  189. WORK( J+I ) = WORK( J+I ) + DCMPLX( S( I ), ZERO )
  190. RESID = MAX( RESID, DZASUM( NS, WORK( J+1 ), 1 ) )
  191. J = J + NS
  192. 10 CONTINUE
  193. *
  194. IF( ANORM.LE.ZERO ) THEN
  195. IF( RESID.NE.ZERO )
  196. $ RESID = ONE / EPS
  197. ELSE
  198. IF( ANORM.GE.RESID ) THEN
  199. RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
  200. ELSE
  201. IF( ANORM.LT.ONE ) THEN
  202. RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
  203. $ ( DBLE( N )*EPS )
  204. ELSE
  205. RESID = MIN( RESID / ANORM, DBLE( N ) ) /
  206. $ ( DBLE( N )*EPS )
  207. END IF
  208. END IF
  209. END IF
  210. *
  211. RETURN
  212. *
  213. * End of ZBDT05
  214. *
  215. END