You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dchksb.f 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. *> \brief \b DCHKSB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DCHKSB( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE, ISEED,
  12. * THRESH, NOUNIT, A, LDA, SD, SE, U, LDU, WORK,
  13. * LWORK, RESULT, INFO )
  14. *
  15. * .. Scalar Arguments ..
  16. * INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
  17. * $ NWDTHS
  18. * DOUBLE PRECISION THRESH
  19. * ..
  20. * .. Array Arguments ..
  21. * LOGICAL DOTYPE( * )
  22. * INTEGER ISEED( 4 ), KK( * ), NN( * )
  23. * DOUBLE PRECISION A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
  24. * $ U( LDU, * ), WORK( * )
  25. * ..
  26. *
  27. *
  28. *> \par Purpose:
  29. * =============
  30. *>
  31. *> \verbatim
  32. *>
  33. *> DCHKSB tests the reduction of a symmetric band matrix to tridiagonal
  34. *> form, used with the symmetric eigenvalue problem.
  35. *>
  36. *> DSBTRD factors a symmetric band matrix A as U S U' , where ' means
  37. *> transpose, S is symmetric tridiagonal, and U is orthogonal.
  38. *> DSBTRD can use either just the lower or just the upper triangle
  39. *> of A; DCHKSB checks both cases.
  40. *>
  41. *> When DCHKSB is called, a number of matrix "sizes" ("n's"), a number
  42. *> of bandwidths ("k's"), and a number of matrix "types" are
  43. *> specified. For each size ("n"), each bandwidth ("k") less than or
  44. *> equal to "n", and each type of matrix, one matrix will be generated
  45. *> and used to test the symmetric banded reduction routine. For each
  46. *> matrix, a number of tests will be performed:
  47. *>
  48. *> (1) | A - V S V' | / ( |A| n ulp ) computed by DSBTRD with
  49. *> UPLO='U'
  50. *>
  51. *> (2) | I - UU' | / ( n ulp )
  52. *>
  53. *> (3) | A - V S V' | / ( |A| n ulp ) computed by DSBTRD with
  54. *> UPLO='L'
  55. *>
  56. *> (4) | I - UU' | / ( n ulp )
  57. *>
  58. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  59. *> each element NN(j) specifies one size.
  60. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  61. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  62. *> Currently, the list of possible types is:
  63. *>
  64. *> (1) The zero matrix.
  65. *> (2) The identity matrix.
  66. *>
  67. *> (3) A diagonal matrix with evenly spaced entries
  68. *> 1, ..., ULP and random signs.
  69. *> (ULP = (first number larger than 1) - 1 )
  70. *> (4) A diagonal matrix with geometrically spaced entries
  71. *> 1, ..., ULP and random signs.
  72. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  73. *> and random signs.
  74. *>
  75. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  76. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  77. *>
  78. *> (8) A matrix of the form U' D U, where U is orthogonal and
  79. *> D has evenly spaced entries 1, ..., ULP with random signs
  80. *> on the diagonal.
  81. *>
  82. *> (9) A matrix of the form U' D U, where U is orthogonal and
  83. *> D has geometrically spaced entries 1, ..., ULP with random
  84. *> signs on the diagonal.
  85. *>
  86. *> (10) A matrix of the form U' D U, where U is orthogonal and
  87. *> D has "clustered" entries 1, ULP,..., ULP with random
  88. *> signs on the diagonal.
  89. *>
  90. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  91. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  92. *>
  93. *> (13) Symmetric matrix with random entries chosen from (-1,1).
  94. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  95. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  96. *> \endverbatim
  97. *
  98. * Arguments:
  99. * ==========
  100. *
  101. *> \param[in] NSIZES
  102. *> \verbatim
  103. *> NSIZES is INTEGER
  104. *> The number of sizes of matrices to use. If it is zero,
  105. *> DCHKSB does nothing. It must be at least zero.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] NN
  109. *> \verbatim
  110. *> NN is INTEGER array, dimension (NSIZES)
  111. *> An array containing the sizes to be used for the matrices.
  112. *> Zero values will be skipped. The values must be at least
  113. *> zero.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] NWDTHS
  117. *> \verbatim
  118. *> NWDTHS is INTEGER
  119. *> The number of bandwidths to use. If it is zero,
  120. *> DCHKSB does nothing. It must be at least zero.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] KK
  124. *> \verbatim
  125. *> KK is INTEGER array, dimension (NWDTHS)
  126. *> An array containing the bandwidths to be used for the band
  127. *> matrices. The values must be at least zero.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] NTYPES
  131. *> \verbatim
  132. *> NTYPES is INTEGER
  133. *> The number of elements in DOTYPE. If it is zero, DCHKSB
  134. *> does nothing. It must be at least zero. If it is MAXTYP+1
  135. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  136. *> defined, which is to use whatever matrix is in A. This
  137. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  138. *> DOTYPE(MAXTYP+1) is .TRUE. .
  139. *> \endverbatim
  140. *>
  141. *> \param[in] DOTYPE
  142. *> \verbatim
  143. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  144. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  145. *> matrix of that size and of type j will be generated.
  146. *> If NTYPES is smaller than the maximum number of types
  147. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  148. *> MAXTYP will not be generated. If NTYPES is larger
  149. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  150. *> will be ignored.
  151. *> \endverbatim
  152. *>
  153. *> \param[in,out] ISEED
  154. *> \verbatim
  155. *> ISEED is INTEGER array, dimension (4)
  156. *> On entry ISEED specifies the seed of the random number
  157. *> generator. The array elements should be between 0 and 4095;
  158. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  159. *> be odd. The random number generator uses a linear
  160. *> congruential sequence limited to small integers, and so
  161. *> should produce machine independent random numbers. The
  162. *> values of ISEED are changed on exit, and can be used in the
  163. *> next call to DCHKSB to continue the same random number
  164. *> sequence.
  165. *> \endverbatim
  166. *>
  167. *> \param[in] THRESH
  168. *> \verbatim
  169. *> THRESH is DOUBLE PRECISION
  170. *> A test will count as "failed" if the "error", computed as
  171. *> described above, exceeds THRESH. Note that the error
  172. *> is scaled to be O(1), so THRESH should be a reasonably
  173. *> small multiple of 1, e.g., 10 or 100. In particular,
  174. *> it should not depend on the precision (single vs. double)
  175. *> or the size of the matrix. It must be at least zero.
  176. *> \endverbatim
  177. *>
  178. *> \param[in] NOUNIT
  179. *> \verbatim
  180. *> NOUNIT is INTEGER
  181. *> The FORTRAN unit number for printing out error messages
  182. *> (e.g., if a routine returns IINFO not equal to 0.)
  183. *> \endverbatim
  184. *>
  185. *> \param[in,out] A
  186. *> \verbatim
  187. *> A is DOUBLE PRECISION array, dimension
  188. *> (LDA, max(NN))
  189. *> Used to hold the matrix whose eigenvalues are to be
  190. *> computed.
  191. *> \endverbatim
  192. *>
  193. *> \param[in] LDA
  194. *> \verbatim
  195. *> LDA is INTEGER
  196. *> The leading dimension of A. It must be at least 2 (not 1!)
  197. *> and at least max( KK )+1.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] SD
  201. *> \verbatim
  202. *> SD is DOUBLE PRECISION array, dimension (max(NN))
  203. *> Used to hold the diagonal of the tridiagonal matrix computed
  204. *> by DSBTRD.
  205. *> \endverbatim
  206. *>
  207. *> \param[out] SE
  208. *> \verbatim
  209. *> SE is DOUBLE PRECISION array, dimension (max(NN))
  210. *> Used to hold the off-diagonal of the tridiagonal matrix
  211. *> computed by DSBTRD.
  212. *> \endverbatim
  213. *>
  214. *> \param[out] U
  215. *> \verbatim
  216. *> U is DOUBLE PRECISION array, dimension (LDU, max(NN))
  217. *> Used to hold the orthogonal matrix computed by DSBTRD.
  218. *> \endverbatim
  219. *>
  220. *> \param[in] LDU
  221. *> \verbatim
  222. *> LDU is INTEGER
  223. *> The leading dimension of U. It must be at least 1
  224. *> and at least max( NN ).
  225. *> \endverbatim
  226. *>
  227. *> \param[out] WORK
  228. *> \verbatim
  229. *> WORK is DOUBLE PRECISION array, dimension (LWORK)
  230. *> \endverbatim
  231. *>
  232. *> \param[in] LWORK
  233. *> \verbatim
  234. *> LWORK is INTEGER
  235. *> The number of entries in WORK. This must be at least
  236. *> max( LDA+1, max(NN)+1 )*max(NN).
  237. *> \endverbatim
  238. *>
  239. *> \param[out] RESULT
  240. *> \verbatim
  241. *> RESULT is DOUBLE PRECISION array, dimension (4)
  242. *> The values computed by the tests described above.
  243. *> The values are currently limited to 1/ulp, to avoid
  244. *> overflow.
  245. *> \endverbatim
  246. *>
  247. *> \param[out] INFO
  248. *> \verbatim
  249. *> INFO is INTEGER
  250. *> If 0, then everything ran OK.
  251. *>
  252. *>-----------------------------------------------------------------------
  253. *>
  254. *> Some Local Variables and Parameters:
  255. *> ---- ----- --------- --- ----------
  256. *> ZERO, ONE Real 0 and 1.
  257. *> MAXTYP The number of types defined.
  258. *> NTEST The number of tests performed, or which can
  259. *> be performed so far, for the current matrix.
  260. *> NTESTT The total number of tests performed so far.
  261. *> NMAX Largest value in NN.
  262. *> NMATS The number of matrices generated so far.
  263. *> NERRS The number of tests which have exceeded THRESH
  264. *> so far.
  265. *> COND, IMODE Values to be passed to the matrix generators.
  266. *> ANORM Norm of A; passed to matrix generators.
  267. *>
  268. *> OVFL, UNFL Overflow and underflow thresholds.
  269. *> ULP, ULPINV Finest relative precision and its inverse.
  270. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  271. *> The following four arrays decode JTYPE:
  272. *> KTYPE(j) The general type (1-10) for type "j".
  273. *> KMODE(j) The MODE value to be passed to the matrix
  274. *> generator for type "j".
  275. *> KMAGN(j) The order of magnitude ( O(1),
  276. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  277. *> \endverbatim
  278. *
  279. * Authors:
  280. * ========
  281. *
  282. *> \author Univ. of Tennessee
  283. *> \author Univ. of California Berkeley
  284. *> \author Univ. of Colorado Denver
  285. *> \author NAG Ltd.
  286. *
  287. *> \ingroup double_eig
  288. *
  289. * =====================================================================
  290. SUBROUTINE DCHKSB( NSIZES, NN, NWDTHS, KK, NTYPES, DOTYPE, ISEED,
  291. $ THRESH, NOUNIT, A, LDA, SD, SE, U, LDU, WORK,
  292. $ LWORK, RESULT, INFO )
  293. *
  294. * -- LAPACK test routine --
  295. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  296. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  297. *
  298. * .. Scalar Arguments ..
  299. INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
  300. $ NWDTHS
  301. DOUBLE PRECISION THRESH
  302. * ..
  303. * .. Array Arguments ..
  304. LOGICAL DOTYPE( * )
  305. INTEGER ISEED( 4 ), KK( * ), NN( * )
  306. DOUBLE PRECISION A( LDA, * ), RESULT( * ), SD( * ), SE( * ),
  307. $ U( LDU, * ), WORK( * )
  308. * ..
  309. *
  310. * =====================================================================
  311. *
  312. * .. Parameters ..
  313. DOUBLE PRECISION ZERO, ONE, TWO, TEN
  314. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  315. $ TEN = 10.0D0 )
  316. DOUBLE PRECISION HALF
  317. PARAMETER ( HALF = ONE / TWO )
  318. INTEGER MAXTYP
  319. PARAMETER ( MAXTYP = 15 )
  320. * ..
  321. * .. Local Scalars ..
  322. LOGICAL BADNN, BADNNB
  323. INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
  324. $ JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
  325. $ NMATS, NMAX, NTEST, NTESTT
  326. DOUBLE PRECISION ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
  327. $ TEMP1, ULP, ULPINV, UNFL
  328. * ..
  329. * .. Local Arrays ..
  330. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
  331. $ KMODE( MAXTYP ), KTYPE( MAXTYP )
  332. * ..
  333. * .. External Functions ..
  334. DOUBLE PRECISION DLAMCH
  335. EXTERNAL DLAMCH
  336. * ..
  337. * .. External Subroutines ..
  338. EXTERNAL DLACPY, DLASET, DLASUM, DLATMR, DLATMS, DSBT21,
  339. $ DSBTRD, XERBLA
  340. * ..
  341. * .. Intrinsic Functions ..
  342. INTRINSIC ABS, DBLE, MAX, MIN, SQRT
  343. * ..
  344. * .. Data statements ..
  345. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8 /
  346. DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  347. $ 2, 3 /
  348. DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  349. $ 0, 0 /
  350. * ..
  351. * .. Executable Statements ..
  352. *
  353. * Check for errors
  354. *
  355. NTESTT = 0
  356. INFO = 0
  357. *
  358. * Important constants
  359. *
  360. BADNN = .FALSE.
  361. NMAX = 1
  362. DO 10 J = 1, NSIZES
  363. NMAX = MAX( NMAX, NN( J ) )
  364. IF( NN( J ).LT.0 )
  365. $ BADNN = .TRUE.
  366. 10 CONTINUE
  367. *
  368. BADNNB = .FALSE.
  369. KMAX = 0
  370. DO 20 J = 1, NSIZES
  371. KMAX = MAX( KMAX, KK( J ) )
  372. IF( KK( J ).LT.0 )
  373. $ BADNNB = .TRUE.
  374. 20 CONTINUE
  375. KMAX = MIN( NMAX-1, KMAX )
  376. *
  377. * Check for errors
  378. *
  379. IF( NSIZES.LT.0 ) THEN
  380. INFO = -1
  381. ELSE IF( BADNN ) THEN
  382. INFO = -2
  383. ELSE IF( NWDTHS.LT.0 ) THEN
  384. INFO = -3
  385. ELSE IF( BADNNB ) THEN
  386. INFO = -4
  387. ELSE IF( NTYPES.LT.0 ) THEN
  388. INFO = -5
  389. ELSE IF( LDA.LT.KMAX+1 ) THEN
  390. INFO = -11
  391. ELSE IF( LDU.LT.NMAX ) THEN
  392. INFO = -15
  393. ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
  394. INFO = -17
  395. END IF
  396. *
  397. IF( INFO.NE.0 ) THEN
  398. CALL XERBLA( 'DCHKSB', -INFO )
  399. RETURN
  400. END IF
  401. *
  402. * Quick return if possible
  403. *
  404. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
  405. $ RETURN
  406. *
  407. * More Important constants
  408. *
  409. UNFL = DLAMCH( 'Safe minimum' )
  410. OVFL = ONE / UNFL
  411. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  412. ULPINV = ONE / ULP
  413. RTUNFL = SQRT( UNFL )
  414. RTOVFL = SQRT( OVFL )
  415. *
  416. * Loop over sizes, types
  417. *
  418. NERRS = 0
  419. NMATS = 0
  420. *
  421. DO 190 JSIZE = 1, NSIZES
  422. N = NN( JSIZE )
  423. ANINV = ONE / DBLE( MAX( 1, N ) )
  424. *
  425. DO 180 JWIDTH = 1, NWDTHS
  426. K = KK( JWIDTH )
  427. IF( K.GT.N )
  428. $ GO TO 180
  429. K = MAX( 0, MIN( N-1, K ) )
  430. *
  431. IF( NSIZES.NE.1 ) THEN
  432. MTYPES = MIN( MAXTYP, NTYPES )
  433. ELSE
  434. MTYPES = MIN( MAXTYP+1, NTYPES )
  435. END IF
  436. *
  437. DO 170 JTYPE = 1, MTYPES
  438. IF( .NOT.DOTYPE( JTYPE ) )
  439. $ GO TO 170
  440. NMATS = NMATS + 1
  441. NTEST = 0
  442. *
  443. DO 30 J = 1, 4
  444. IOLDSD( J ) = ISEED( J )
  445. 30 CONTINUE
  446. *
  447. * Compute "A".
  448. * Store as "Upper"; later, we will copy to other format.
  449. *
  450. * Control parameters:
  451. *
  452. * KMAGN KMODE KTYPE
  453. * =1 O(1) clustered 1 zero
  454. * =2 large clustered 2 identity
  455. * =3 small exponential (none)
  456. * =4 arithmetic diagonal, (w/ eigenvalues)
  457. * =5 random log symmetric, w/ eigenvalues
  458. * =6 random (none)
  459. * =7 random diagonal
  460. * =8 random symmetric
  461. * =9 positive definite
  462. * =10 diagonally dominant tridiagonal
  463. *
  464. IF( MTYPES.GT.MAXTYP )
  465. $ GO TO 100
  466. *
  467. ITYPE = KTYPE( JTYPE )
  468. IMODE = KMODE( JTYPE )
  469. *
  470. * Compute norm
  471. *
  472. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  473. *
  474. 40 CONTINUE
  475. ANORM = ONE
  476. GO TO 70
  477. *
  478. 50 CONTINUE
  479. ANORM = ( RTOVFL*ULP )*ANINV
  480. GO TO 70
  481. *
  482. 60 CONTINUE
  483. ANORM = RTUNFL*N*ULPINV
  484. GO TO 70
  485. *
  486. 70 CONTINUE
  487. *
  488. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  489. IINFO = 0
  490. IF( JTYPE.LE.15 ) THEN
  491. COND = ULPINV
  492. ELSE
  493. COND = ULPINV*ANINV / TEN
  494. END IF
  495. *
  496. * Special Matrices -- Identity & Jordan block
  497. *
  498. * Zero
  499. *
  500. IF( ITYPE.EQ.1 ) THEN
  501. IINFO = 0
  502. *
  503. ELSE IF( ITYPE.EQ.2 ) THEN
  504. *
  505. * Identity
  506. *
  507. DO 80 JCOL = 1, N
  508. A( K+1, JCOL ) = ANORM
  509. 80 CONTINUE
  510. *
  511. ELSE IF( ITYPE.EQ.4 ) THEN
  512. *
  513. * Diagonal Matrix, [Eigen]values Specified
  514. *
  515. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  516. $ ANORM, 0, 0, 'Q', A( K+1, 1 ), LDA,
  517. $ WORK( N+1 ), IINFO )
  518. *
  519. ELSE IF( ITYPE.EQ.5 ) THEN
  520. *
  521. * Symmetric, eigenvalues specified
  522. *
  523. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  524. $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
  525. $ IINFO )
  526. *
  527. ELSE IF( ITYPE.EQ.7 ) THEN
  528. *
  529. * Diagonal, random eigenvalues
  530. *
  531. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  532. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  533. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  534. $ ZERO, ANORM, 'Q', A( K+1, 1 ), LDA,
  535. $ IDUMMA, IINFO )
  536. *
  537. ELSE IF( ITYPE.EQ.8 ) THEN
  538. *
  539. * Symmetric, random eigenvalues
  540. *
  541. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  542. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  543. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, K, K,
  544. $ ZERO, ANORM, 'Q', A, LDA, IDUMMA, IINFO )
  545. *
  546. ELSE IF( ITYPE.EQ.9 ) THEN
  547. *
  548. * Positive definite, eigenvalues specified.
  549. *
  550. CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
  551. $ ANORM, K, K, 'Q', A, LDA, WORK( N+1 ),
  552. $ IINFO )
  553. *
  554. ELSE IF( ITYPE.EQ.10 ) THEN
  555. *
  556. * Positive definite tridiagonal, eigenvalues specified.
  557. *
  558. IF( N.GT.1 )
  559. $ K = MAX( 1, K )
  560. CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
  561. $ ANORM, 1, 1, 'Q', A( K, 1 ), LDA,
  562. $ WORK( N+1 ), IINFO )
  563. DO 90 I = 2, N
  564. TEMP1 = ABS( A( K, I ) ) /
  565. $ SQRT( ABS( A( K+1, I-1 )*A( K+1, I ) ) )
  566. IF( TEMP1.GT.HALF ) THEN
  567. A( K, I ) = HALF*SQRT( ABS( A( K+1,
  568. $ I-1 )*A( K+1, I ) ) )
  569. END IF
  570. 90 CONTINUE
  571. *
  572. ELSE
  573. *
  574. IINFO = 1
  575. END IF
  576. *
  577. IF( IINFO.NE.0 ) THEN
  578. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
  579. $ JTYPE, IOLDSD
  580. INFO = ABS( IINFO )
  581. RETURN
  582. END IF
  583. *
  584. 100 CONTINUE
  585. *
  586. * Call DSBTRD to compute S and U from upper triangle.
  587. *
  588. CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
  589. *
  590. NTEST = 1
  591. CALL DSBTRD( 'V', 'U', N, K, WORK, LDA, SD, SE, U, LDU,
  592. $ WORK( LDA*N+1 ), IINFO )
  593. *
  594. IF( IINFO.NE.0 ) THEN
  595. WRITE( NOUNIT, FMT = 9999 )'DSBTRD(U)', IINFO, N,
  596. $ JTYPE, IOLDSD
  597. INFO = ABS( IINFO )
  598. IF( IINFO.LT.0 ) THEN
  599. RETURN
  600. ELSE
  601. RESULT( 1 ) = ULPINV
  602. GO TO 150
  603. END IF
  604. END IF
  605. *
  606. * Do tests 1 and 2
  607. *
  608. CALL DSBT21( 'Upper', N, K, 1, A, LDA, SD, SE, U, LDU,
  609. $ WORK, RESULT( 1 ) )
  610. *
  611. * Convert A from Upper-Triangle-Only storage to
  612. * Lower-Triangle-Only storage.
  613. *
  614. DO 120 JC = 1, N
  615. DO 110 JR = 0, MIN( K, N-JC )
  616. A( JR+1, JC ) = A( K+1-JR, JC+JR )
  617. 110 CONTINUE
  618. 120 CONTINUE
  619. DO 140 JC = N + 1 - K, N
  620. DO 130 JR = MIN( K, N-JC ) + 1, K
  621. A( JR+1, JC ) = ZERO
  622. 130 CONTINUE
  623. 140 CONTINUE
  624. *
  625. * Call DSBTRD to compute S and U from lower triangle
  626. *
  627. CALL DLACPY( ' ', K+1, N, A, LDA, WORK, LDA )
  628. *
  629. NTEST = 3
  630. CALL DSBTRD( 'V', 'L', N, K, WORK, LDA, SD, SE, U, LDU,
  631. $ WORK( LDA*N+1 ), IINFO )
  632. *
  633. IF( IINFO.NE.0 ) THEN
  634. WRITE( NOUNIT, FMT = 9999 )'DSBTRD(L)', IINFO, N,
  635. $ JTYPE, IOLDSD
  636. INFO = ABS( IINFO )
  637. IF( IINFO.LT.0 ) THEN
  638. RETURN
  639. ELSE
  640. RESULT( 3 ) = ULPINV
  641. GO TO 150
  642. END IF
  643. END IF
  644. NTEST = 4
  645. *
  646. * Do tests 3 and 4
  647. *
  648. CALL DSBT21( 'Lower', N, K, 1, A, LDA, SD, SE, U, LDU,
  649. $ WORK, RESULT( 3 ) )
  650. *
  651. * End of Loop -- Check for RESULT(j) > THRESH
  652. *
  653. 150 CONTINUE
  654. NTESTT = NTESTT + NTEST
  655. *
  656. * Print out tests which fail.
  657. *
  658. DO 160 JR = 1, NTEST
  659. IF( RESULT( JR ).GE.THRESH ) THEN
  660. *
  661. * If this is the first test to fail,
  662. * print a header to the data file.
  663. *
  664. IF( NERRS.EQ.0 ) THEN
  665. WRITE( NOUNIT, FMT = 9998 )'DSB'
  666. WRITE( NOUNIT, FMT = 9997 )
  667. WRITE( NOUNIT, FMT = 9996 )
  668. WRITE( NOUNIT, FMT = 9995 )'Symmetric'
  669. WRITE( NOUNIT, FMT = 9994 )'orthogonal', '''',
  670. $ 'transpose', ( '''', J = 1, 4 )
  671. END IF
  672. NERRS = NERRS + 1
  673. WRITE( NOUNIT, FMT = 9993 )N, K, IOLDSD, JTYPE,
  674. $ JR, RESULT( JR )
  675. END IF
  676. 160 CONTINUE
  677. *
  678. 170 CONTINUE
  679. 180 CONTINUE
  680. 190 CONTINUE
  681. *
  682. * Summary
  683. *
  684. CALL DLASUM( 'DSB', NOUNIT, NERRS, NTESTT )
  685. RETURN
  686. *
  687. 9999 FORMAT( ' DCHKSB: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  688. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  689. *
  690. 9998 FORMAT( / 1X, A3,
  691. $ ' -- Real Symmetric Banded Tridiagonal Reduction Routines' )
  692. 9997 FORMAT( ' Matrix types (see DCHKSB for details): ' )
  693. *
  694. 9996 FORMAT( / ' Special Matrices:',
  695. $ / ' 1=Zero matrix. ',
  696. $ ' 5=Diagonal: clustered entries.',
  697. $ / ' 2=Identity matrix. ',
  698. $ ' 6=Diagonal: large, evenly spaced.',
  699. $ / ' 3=Diagonal: evenly spaced entries. ',
  700. $ ' 7=Diagonal: small, evenly spaced.',
  701. $ / ' 4=Diagonal: geometr. spaced entries.' )
  702. 9995 FORMAT( ' Dense ', A, ' Banded Matrices:',
  703. $ / ' 8=Evenly spaced eigenvals. ',
  704. $ ' 12=Small, evenly spaced eigenvals.',
  705. $ / ' 9=Geometrically spaced eigenvals. ',
  706. $ ' 13=Matrix with random O(1) entries.',
  707. $ / ' 10=Clustered eigenvalues. ',
  708. $ ' 14=Matrix with large random entries.',
  709. $ / ' 11=Large, evenly spaced eigenvals. ',
  710. $ ' 15=Matrix with small random entries.' )
  711. *
  712. 9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', A, ',',
  713. $ / 20X, A, ' means ', A, '.', / ' UPLO=''U'':',
  714. $ / ' 1= | A - U S U', A1, ' | / ( |A| n ulp ) ',
  715. $ ' 2= | I - U U', A1, ' | / ( n ulp )', / ' UPLO=''L'':',
  716. $ / ' 3= | A - U S U', A1, ' | / ( |A| n ulp ) ',
  717. $ ' 4= | I - U U', A1, ' | / ( n ulp )' )
  718. 9993 FORMAT( ' N=', I5, ', K=', I4, ', seed=', 4( I4, ',' ), ' type ',
  719. $ I2, ', test(', I2, ')=', G10.3 )
  720. *
  721. * End of DCHKSB
  722. *
  723. END