You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgemm_small_kernel_nt_power10.c 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. /***************************************************************************
  2. Copyright (c) 2021, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include "common.h"
  28. #include <altivec.h>
  29. typedef __vector unsigned char vec_t;
  30. #if !__has_builtin(__builtin_vsx_assemble_pair)
  31. #define __builtin_vsx_assemble_pair __builtin_mma_assemble_pair
  32. #endif
  33. #if !defined(B0)
  34. #define SAVE_4x2_ACC(ACC, N, M) \
  35. __builtin_mma_disassemble_acc((void *)result, ACC); \
  36. rc0 = vec_xl(0, C+(N+0)*ldc+M); \
  37. rc0 = vec_mul(rc0, vbeta); \
  38. result[0] = vec_madd(result[0], valpha, rc0); \
  39. vec_xst(result[0], 0, C+(N+0)*ldc+M); \
  40. rc0 = vec_xl(0, C+(N+1)*ldc+M); \
  41. rc0 = vec_mul(rc0, vbeta); \
  42. result[1] = vec_madd(result[1], valpha, rc0); \
  43. vec_xst(result[1], 0, C+(N+1)*ldc+M); \
  44. rc0 = vec_xl(0, C+(N+2)*ldc+M); \
  45. rc0 = vec_mul(rc0, vbeta); \
  46. result[2] = vec_madd(result[2], valpha, rc0); \
  47. vec_xst(result[2], 0, C+(N+2)*ldc+M); \
  48. rc0 = vec_xl(0, C+(N+3)*ldc+M); \
  49. rc0 = vec_mul(rc0, vbeta); \
  50. result[3] = vec_madd(result[3], valpha, rc0); \
  51. vec_xst(result[3], 0, C+(N+3)*ldc+M);
  52. #define SAVE_2x2_ACC(ACC, N, M) \
  53. __builtin_mma_disassemble_acc((void *)result, ACC); \
  54. rc0 = vec_xl(0, C+(N+0)*ldc+M); \
  55. rc0 = vec_mul(rc0, vbeta); \
  56. result[0] = vec_madd(result[0], valpha, rc0); \
  57. vec_xst(result[0], 0, C+(N+0)*ldc+M); \
  58. rc0 = vec_xl(0, C+(N+1)*ldc+M); \
  59. rc0 = vec_mul(rc0, vbeta); \
  60. result[1] = vec_madd(result[1], valpha, rc0); \
  61. vec_xst(result[1], 0, C+(N+1)*ldc+M);
  62. #define SAVE_1x4_VSR(result, N, M) \
  63. rc0 = vec_xl(0, C+((N)*ldc)+M); \
  64. rc0 = vec_mul(rc0, vbeta); \
  65. result = vec_madd(result, valpha, rc0); \
  66. vec_xst(result, 0, C+((N)*ldc)+M);
  67. #define SAVE_4x1_VSR(result, N, M) \
  68. result = vec_mul(result, valpha); \
  69. C[(N+0)*ldc+M] = (C[(N+0)*ldc+M] * beta) + result[0]; \
  70. C[(N+1)*ldc+M] = (C[(N+1)*ldc+M] * beta) + result[1];
  71. #else
  72. #define SAVE_4x2_ACC(ACC, N, M) \
  73. __builtin_mma_disassemble_acc((void *)result, ACC); \
  74. result[0] = vec_mul(result[0], valpha); \
  75. vec_xst(result[0], 0, C+(N+0)*ldc+M); \
  76. result[1] = vec_mul(result[1], valpha); \
  77. vec_xst(result[1], 0, C+(N+1)*ldc+M); \
  78. result[2] = vec_mul(result[2], valpha); \
  79. vec_xst(result[2], 0, C+(N+2)*ldc+M); \
  80. result[3] = vec_mul(result[3], valpha); \
  81. vec_xst(result[3], 0, C+(N+3)*ldc+M);
  82. #define SAVE_2x2_ACC(ACC, N, M) \
  83. __builtin_mma_disassemble_acc((void *)result, ACC); \
  84. result[0] = vec_mul(result[0], valpha); \
  85. vec_xst(result[0], 0, C+(N+0)*ldc+M); \
  86. result[1] = vec_mul(result[1], valpha); \
  87. vec_xst(result[1], 0, C+(N+1)*ldc+M);
  88. #define SAVE_1x4_VSR(result, N, M) \
  89. result = vec_mul(result, valpha); \
  90. vec_xst(result, 0, C+((N)*ldc)+M);
  91. #define SAVE_4x1_VSR(result, N, M) \
  92. result = vec_mul(result, valpha); \
  93. C[(N+0)*ldc+M] = result[0]; \
  94. C[(N+1)*ldc+M] = result[1];
  95. #endif
  96. #define INIT_8ACCS() \
  97. __builtin_mma_xxsetaccz(&acc0); \
  98. __builtin_mma_xxsetaccz(&acc1); \
  99. __builtin_mma_xxsetaccz(&acc2); \
  100. __builtin_mma_xxsetaccz(&acc3); \
  101. __builtin_mma_xxsetaccz(&acc4); \
  102. __builtin_mma_xxsetaccz(&acc5); \
  103. __builtin_mma_xxsetaccz(&acc6); \
  104. __builtin_mma_xxsetaccz(&acc7);
  105. #define INIT_4ACCS() \
  106. __builtin_mma_xxsetaccz(&acc0); \
  107. __builtin_mma_xxsetaccz(&acc1); \
  108. __builtin_mma_xxsetaccz(&acc2); \
  109. __builtin_mma_xxsetaccz(&acc3);
  110. #define INIT_2ACCS() \
  111. __builtin_mma_xxsetaccz(&acc0); \
  112. __builtin_mma_xxsetaccz(&acc1);
  113. #define INIT_1ACC() __builtin_mma_xxsetaccz(&acc0);
  114. #define LOAD_A_1x8(K, M) \
  115. ra0 = vec_xl(0, A+(K*lda)+M+0); \
  116. ra1 = vec_xl(0, A+(K*lda)+M+2); \
  117. ra2 = vec_xl(0, A+(K*lda)+M+4); \
  118. ra3 = vec_xl(0, A+(K*lda)+M+6);
  119. #define LOAD_A_1x4(K, M) \
  120. ra0 = vec_xl(0, A+(K*lda)+M+0); \
  121. ra1 = vec_xl(0, A+(K*lda)+M+2);
  122. #define LOAD_A_1x2(K, M) ra0 = vec_xl(0, A+(K*lda)+M);
  123. #define LOAD_A_1x1(K, M) ra0 = vec_splats(A[K*lda+M]);
  124. #define LOAD_BP_1x8(K, N) \
  125. pb0 = *((__vector_pair *)((void *)&B[((K)*ldb)+N+0])); \
  126. pb1 = *((__vector_pair *)((void *)&B[((K)*ldb)+N+4]));
  127. #define LOAD_BP_1x4(K, N) \
  128. pb0 = *((__vector_pair *)((void *)&B[((K)*ldb)+N+0]));
  129. #define LOAD_BP_1x2(K, N) \
  130. t0 = vec_xl(0, B+(K*ldb)+N); \
  131. __builtin_vsx_assemble_pair(&pb0, (vec_t)t0, (vec_t)t0);
  132. #define LOAD_B_1x8(K, N) \
  133. rb0 = vec_xl(0, B+(K*ldb)+N+0); \
  134. rb1 = vec_xl(0, B+(K*ldb)+N+2); \
  135. rb2 = vec_xl(0, B+(K*ldb)+N+4); \
  136. rb3 = vec_xl(0, B+(K*ldb)+N+6); \
  137. #define LOAD_B_1x4(K, N) \
  138. rb0 = vec_xl(0, B+(K*ldb)+N+0); \
  139. rb1 = vec_xl(0, B+(K*ldb)+N+2);
  140. #define LOAD_B_1x2(K, N) \
  141. rb0 = vec_xl(0, B+(K*ldb)+N+0);
  142. #define LOAD_B_1x1(K, N) rb0 = vec_splats(B[K*ldb+N]);
  143. #define KERNEL_MMA_8ACC(b0, b1, b2, b3, b4, b5, b6, b7, \
  144. a0, a1, a2, a3, a4, a5, a6, a7) \
  145. __builtin_mma_xvf64gerpp(&acc0, b0, (vec_t)a0); \
  146. __builtin_mma_xvf64gerpp(&acc1, b1, (vec_t)a1); \
  147. __builtin_mma_xvf64gerpp(&acc2, b2, (vec_t)a2); \
  148. __builtin_mma_xvf64gerpp(&acc3, b3, (vec_t)a3); \
  149. __builtin_mma_xvf64gerpp(&acc4, b4, (vec_t)a4); \
  150. __builtin_mma_xvf64gerpp(&acc5, b5, (vec_t)a5); \
  151. __builtin_mma_xvf64gerpp(&acc6, b6, (vec_t)a6); \
  152. __builtin_mma_xvf64gerpp(&acc7, b7, (vec_t)a7);
  153. #define KERNEL_MMA_4ACC(b0, b1, b2, b3, a0, a1, a2, a3) \
  154. __builtin_mma_xvf64gerpp(&acc0, b0, (vec_t)a0); \
  155. __builtin_mma_xvf64gerpp(&acc1, b1, (vec_t)a1); \
  156. __builtin_mma_xvf64gerpp(&acc2, b2, (vec_t)a2); \
  157. __builtin_mma_xvf64gerpp(&acc3, b3, (vec_t)a3);
  158. #define KERNEL_MMA_2ACC(b0, b1, a0, a1) \
  159. __builtin_mma_xvf64gerpp(&acc0, b0, (vec_t)a0); \
  160. __builtin_mma_xvf64gerpp(&acc1, b1, (vec_t)a1);
  161. #define KERNEL_MMA_1ACC(b0, a0) \
  162. __builtin_mma_xvf64gerpp(&acc0, b0, (vec_t)a0);
  163. #define KERNEL_VMADD_4VSR(a0, a1, a2, a3, b0, b1, b2, b3) \
  164. result = vec_madd(a0, b0, result); \
  165. result1 = vec_madd(a1, b1, result1); \
  166. result2 = vec_madd(a2, b2, result2); \
  167. result3 = vec_madd(a3, b3, result3);
  168. #define KERNEL_VMADD_2VSR(a0, a1, b0, b1) \
  169. result = vec_madd(a0, b0, result); \
  170. result1 = vec_madd(a1, b1, result1);
  171. #define KERNEL_VMADD_1VSR(a0, b0) \
  172. result = vec_madd(a0, b0, result);
  173. #ifdef B0
  174. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT * A, BLASLONG lda, FLOAT alpha, FLOAT * B, BLASLONG ldb, FLOAT * C, BLASLONG ldc)
  175. #else
  176. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT * A, BLASLONG lda, FLOAT alpha, FLOAT * B, BLASLONG ldb, FLOAT beta, FLOAT * C, BLASLONG ldc)
  177. #endif
  178. {
  179. BLASLONG m, n, k;
  180. BLASLONG m8 = M & ~7;
  181. BLASLONG m4 = M & ~3;
  182. BLASLONG m2 = M & ~1;
  183. BLASLONG n8 = N & ~7;
  184. BLASLONG n4 = N & ~3;
  185. BLASLONG n2 = N & ~1;
  186. vector double valpha = vec_splats(alpha);
  187. #if !defined(B0)
  188. vector double vbeta = vec_splats(beta);
  189. #endif
  190. for (m = 0; m < m8; m += 8) {
  191. for (n = 0; n < n8; n += 8) {
  192. __vector_quad acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7;
  193. INIT_8ACCS();
  194. register vector double ra0, ra1, ra2, ra3;
  195. __vector_pair pb0, pb1;
  196. for (k = 0; k < K; k++) {
  197. LOAD_A_1x8(k, m);
  198. LOAD_BP_1x8(k, n);
  199. KERNEL_MMA_8ACC(pb0, pb1, pb0, pb1, pb0, pb1, pb0, pb1,
  200. ra0, ra0, ra1, ra1, ra2, ra2, ra3, ra3);
  201. }
  202. #if !defined(B0)
  203. register vector double rc0;
  204. #endif
  205. vector double result[4];
  206. SAVE_4x2_ACC(&acc0, n+0, m+0);
  207. SAVE_4x2_ACC(&acc2, n+0, m+2);
  208. SAVE_4x2_ACC(&acc4, n+0, m+4);
  209. SAVE_4x2_ACC(&acc6, n+0, m+6);
  210. SAVE_4x2_ACC(&acc1, n+4, m+0);
  211. SAVE_4x2_ACC(&acc3, n+4, m+2);
  212. SAVE_4x2_ACC(&acc5, n+4, m+4);
  213. SAVE_4x2_ACC(&acc7, n+4, m+6);
  214. }
  215. for (; n < n4; n += 4) {
  216. __vector_quad acc0, acc1, acc2, acc3;
  217. INIT_4ACCS();
  218. register vector double ra0, ra1, ra2, ra3;
  219. __vector_pair pb0;
  220. for (k = 0; k < K; k++) {
  221. LOAD_A_1x8(k, m);
  222. LOAD_BP_1x4(k, n);
  223. KERNEL_MMA_4ACC(pb0, pb0, pb0, pb0, ra0, ra1, ra2, ra3);
  224. }
  225. #if !defined(B0)
  226. register vector double rc0;
  227. #endif
  228. vector double result[4];
  229. SAVE_4x2_ACC(&acc0, n+0, m+0);
  230. SAVE_4x2_ACC(&acc1, n+0, m+2);
  231. SAVE_4x2_ACC(&acc2, n+0, m+4);
  232. SAVE_4x2_ACC(&acc3, n+0, m+6);
  233. }
  234. for (; n < n2; n += 2) {
  235. __vector_quad acc0, acc1, acc2, acc3;
  236. INIT_4ACCS();
  237. register vector double ra0, ra1, ra2, ra3;
  238. register vector double t0;
  239. __vector_pair pb0;
  240. for (k = 0; k < K; k++) {
  241. LOAD_A_1x8(k, m);
  242. LOAD_BP_1x2(k, n);
  243. KERNEL_MMA_4ACC(pb0, pb0, pb0, pb0, ra0, ra1, ra2, ra3);
  244. }
  245. #if !defined(B0)
  246. register vector double rc0;
  247. #endif
  248. vector double result[4];
  249. SAVE_2x2_ACC(&acc0, n+0, m+0);
  250. SAVE_2x2_ACC(&acc1, n+0, m+2);
  251. SAVE_2x2_ACC(&acc2, n+0, m+4);
  252. SAVE_2x2_ACC(&acc3, n+0, m+6);
  253. }
  254. for (; n < N; n++) {
  255. register vector double result = ((vector double){0.,0.});
  256. register vector double result1 = ((vector double){0.,0.});
  257. register vector double result2 = ((vector double){0.,0.});
  258. register vector double result3 = ((vector double){0.,0.});
  259. register vector double ra0, ra1, ra2, ra3;
  260. register vector double rb0;
  261. for (k = 0; k < K; k++) {
  262. LOAD_A_1x8(k, m);
  263. LOAD_B_1x1(k, n);
  264. KERNEL_VMADD_4VSR(ra0, ra1, ra2, ra3, rb0, rb0, rb0, rb0);
  265. }
  266. #if !defined(B0)
  267. register vector double rc0;
  268. #endif
  269. SAVE_1x4_VSR(result, n, m+0);
  270. SAVE_1x4_VSR(result1, n, m+2);
  271. SAVE_1x4_VSR(result2, n, m+4);
  272. SAVE_1x4_VSR(result3, n, m+6);
  273. }
  274. }
  275. for (; m < m4; m += 4) {
  276. for (n = 0; n < n8; n += 8) {
  277. __vector_quad acc0, acc1, acc2, acc3;
  278. INIT_4ACCS();
  279. register vector double ra0, ra1;
  280. __vector_pair pb0, pb1;
  281. for (k = 0; k < K; k++) {
  282. LOAD_A_1x4(k, m);
  283. LOAD_BP_1x8(k, n);
  284. KERNEL_MMA_4ACC(pb0, pb1, pb0, pb1, ra0, ra0, ra1, ra1);
  285. }
  286. #if !defined(B0)
  287. register vector double rc0;
  288. #endif
  289. vector double result[4];
  290. SAVE_4x2_ACC(&acc0, n+0, m+0);
  291. SAVE_4x2_ACC(&acc2, n+0, m+2);
  292. SAVE_4x2_ACC(&acc1, n+4, m+0);
  293. SAVE_4x2_ACC(&acc3, n+4, m+2);
  294. }
  295. for (; n < n4; n += 4) {
  296. __vector_quad acc0, acc1;
  297. INIT_2ACCS();
  298. register vector double ra0, ra1;
  299. __vector_pair pb0;
  300. for (k = 0; k < K; k++) {
  301. LOAD_A_1x4(k, m);
  302. LOAD_BP_1x4(k, n);
  303. KERNEL_MMA_2ACC(pb0, pb0, ra0, ra1);
  304. }
  305. #if !defined(B0)
  306. register vector double rc0;
  307. #endif
  308. vector double result[4];
  309. SAVE_4x2_ACC(&acc0, n+0, m+0);
  310. SAVE_4x2_ACC(&acc1, n+0, m+2);
  311. }
  312. for (; n < n2; n += 2) {
  313. __vector_quad acc0, acc1;
  314. INIT_2ACCS();
  315. register vector double ra0, ra1;
  316. register vector double t0;
  317. __vector_pair pb0;
  318. for (k = 0; k < K; k++) {
  319. LOAD_A_1x4(k, m);
  320. LOAD_BP_1x2(k, n);
  321. KERNEL_MMA_2ACC(pb0, pb0, ra0, ra1);
  322. }
  323. #if !defined(B0)
  324. register vector double rc0;
  325. #endif
  326. vector double result[4];
  327. SAVE_2x2_ACC(&acc0, n+0, m+0);
  328. SAVE_2x2_ACC(&acc1, n+0, m+2);
  329. }
  330. for (; n < N; n++) {
  331. register vector double result = ((vector double){0.,0.});
  332. register vector double result1 = ((vector double){0.,0.});
  333. register vector double ra0, ra1;
  334. register vector double rb0;
  335. for (k = 0; k < K; k++) {
  336. LOAD_A_1x4(k, m);
  337. LOAD_B_1x1(k, n);
  338. KERNEL_VMADD_2VSR(ra0, ra1, rb0, rb0);
  339. }
  340. #if !defined(B0)
  341. register vector double rc0;
  342. #endif
  343. SAVE_1x4_VSR(result, n, m+0);
  344. SAVE_1x4_VSR(result1, n, m+2);
  345. }
  346. }
  347. for (; m < m2; m += 2) {
  348. for (n = 0; n < n8; n += 8) {
  349. __vector_quad acc0, acc1;
  350. INIT_2ACCS();
  351. register vector double ra0;
  352. __vector_pair pb0, pb1;
  353. for (k = 0; k < K; k++) {
  354. LOAD_A_1x2(k, m);
  355. LOAD_BP_1x8(k, n);
  356. KERNEL_MMA_2ACC(pb0, pb1, ra0, ra0);
  357. }
  358. #if !defined(B0)
  359. register vector double rc0;
  360. #endif
  361. vector double result[4];
  362. SAVE_4x2_ACC(&acc0, n+0, m+0);
  363. SAVE_4x2_ACC(&acc1, n+4, m+0);
  364. }
  365. for (; n < n4; n += 4) {
  366. __vector_quad acc0;
  367. INIT_1ACC();
  368. register vector double ra0;
  369. __vector_pair pb0;
  370. for (k = 0; k < K; k++) {
  371. LOAD_A_1x2(k, m);
  372. LOAD_BP_1x4(k, n);
  373. KERNEL_MMA_1ACC(pb0, ra0);
  374. }
  375. #if !defined(B0)
  376. register vector double rc0;
  377. #endif
  378. vector double result[4];
  379. SAVE_4x2_ACC(&acc0, n, m);
  380. }
  381. for (; n < n2; n += 2) {
  382. __vector_quad acc0;
  383. INIT_1ACC();
  384. register vector double ra0;
  385. register vector double t0;
  386. __vector_pair pb0;
  387. for (k = 0; k < K; k++) {
  388. LOAD_A_1x2(k, m);
  389. LOAD_BP_1x2(k, n);
  390. KERNEL_MMA_1ACC(pb0, ra0);
  391. }
  392. #if !defined(B0)
  393. register vector double rc0;
  394. #endif
  395. vector double result[4];
  396. SAVE_2x2_ACC(&acc0, n, m);
  397. }
  398. for (; n < N; n++) {
  399. register vector double result = ((vector double){0.,0.});
  400. register vector double ra0;
  401. register vector double rb0;
  402. for (k = 0; k < K; k++) {
  403. LOAD_A_1x2(k, m);
  404. LOAD_B_1x1(k, n);
  405. KERNEL_VMADD_1VSR(ra0, rb0);
  406. }
  407. #if !defined(B0)
  408. register vector double rc0;
  409. #endif
  410. SAVE_1x4_VSR(result, n, m+0);
  411. }
  412. }
  413. for (; m < M; m++) {
  414. for (n = 0; n < n8; n += 8) {
  415. register vector double result = ((vector double){0.,0.});
  416. register vector double result1 = ((vector double){0.,0.});
  417. register vector double result2 = ((vector double){0.,0.});
  418. register vector double result3 = ((vector double){0.,0.});
  419. register vector double ra0;
  420. register vector double rb0, rb1, rb2, rb3;
  421. for (k = 0; k < K; k++) {
  422. LOAD_A_1x1(k, m);
  423. LOAD_B_1x8(k, n);
  424. KERNEL_VMADD_4VSR(ra0, ra0, ra0, ra0, rb0, rb1, rb2, rb3);
  425. }
  426. SAVE_4x1_VSR(result, n, m);
  427. SAVE_4x1_VSR(result1, n+2, m);
  428. SAVE_4x1_VSR(result2, n+4, m);
  429. SAVE_4x1_VSR(result3, n+6, m);
  430. }
  431. for (; n < n4; n += 4) {
  432. register vector double result = ((vector double){0.,0.});
  433. register vector double result1 = ((vector double){0.,0.});
  434. register vector double ra0;
  435. register vector double rb0, rb1;
  436. for (k = 0; k < K; k++) {
  437. LOAD_A_1x1(k, m);
  438. LOAD_B_1x4(k, n);
  439. KERNEL_VMADD_2VSR(ra0, ra0, rb0, rb1);
  440. }
  441. SAVE_4x1_VSR(result, n, m);
  442. SAVE_4x1_VSR(result1, n+2, m);
  443. }
  444. for (; n < n2; n += 2) {
  445. register vector double result = ((vector double){0.,0.});
  446. register vector double ra0;
  447. register vector double rb0;
  448. for (k = 0; k < K; k++) {
  449. LOAD_A_1x1(k, m);
  450. LOAD_B_1x2(k, n);
  451. KERNEL_VMADD_1VSR(ra0, rb0);
  452. }
  453. SAVE_4x1_VSR(result, n, m);
  454. }
  455. for (; n < N; n++) {
  456. FLOAT result = 0.0;
  457. for (k = 0; k < K; k++) {
  458. result += A[k*lda+m] * B[k*ldb+n];
  459. }
  460. result = result * alpha;
  461. #if !defined(B0)
  462. C[n*ldc+m] = (C[n*ldc+m] * beta) + result;
  463. #else
  464. C[n*ldc+m] = result;
  465. #endif
  466. }
  467. }
  468. return 0;
  469. }