|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 |
- /*********************************************************************/
- /* Copyright 2009, 2010 The University of Texas at Austin. */
- /* All rights reserved. */
- /* */
- /* Redistribution and use in source and binary forms, with or */
- /* without modification, are permitted provided that the following */
- /* conditions are met: */
- /* */
- /* 1. Redistributions of source code must retain the above */
- /* copyright notice, this list of conditions and the following */
- /* disclaimer. */
- /* */
- /* 2. Redistributions in binary form must reproduce the above */
- /* copyright notice, this list of conditions and the following */
- /* disclaimer in the documentation and/or other materials */
- /* provided with the distribution. */
- /* */
- /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
- /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
- /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
- /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
- /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
- /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
- /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
- /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
- /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
- /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
- /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
- /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
- /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
- /* POSSIBILITY OF SUCH DAMAGE. */
- /* */
- /* The views and conclusions contained in the software and */
- /* documentation are those of the authors and should not be */
- /* interpreted as representing official policies, either expressed */
- /* or implied, of The University of Texas at Austin. */
- /*********************************************************************/
-
- #include <stdio.h>
- #include "common.h"
-
- #ifndef BETA_OPERATION
- #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \
- GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \
- BETA[0], BETA[1], NULL, 0, NULL, 0, \
- (FLOAT *)(C) + (M_FROM) + (N_FROM) * (LDC) * COMPSIZE, LDC)
- #endif
-
- #ifndef ICOPYB_OPERATION
- #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
- defined(RN) || defined(RT) || defined(RC) || defined(RR)
- #define ICOPYB_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
- GEMM3M_ITCOPYB(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
- #else
- #define ICOPYB_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
- GEMM3M_INCOPYB(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
- #endif
- #endif
-
- #ifndef ICOPYR_OPERATION
- #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
- defined(RN) || defined(RT) || defined(RC) || defined(RR)
- #define ICOPYR_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
- GEMM3M_ITCOPYR(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
- #else
- #define ICOPYR_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
- GEMM3M_INCOPYR(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
- #endif
- #endif
-
- #ifndef ICOPYI_OPERATION
- #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \
- defined(RN) || defined(RT) || defined(RC) || defined(RR)
- #define ICOPYI_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
- GEMM3M_ITCOPYI(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER)
- #else
- #define ICOPYI_OPERATION(M, N, A, LDA, X, Y, BUFFER) \
- GEMM3M_INCOPYI(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER)
- #endif
- #endif
-
-
- #ifndef OCOPYB_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #define OCOPYB_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
- GEMM3M_ONCOPYB(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
- #else
- #define OCOPYB_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
- GEMM3M_OTCOPYB(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
- #endif
- #endif
-
- #ifndef OCOPYR_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #define OCOPYR_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
- GEMM3M_ONCOPYR(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
- #else
- #define OCOPYR_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
- GEMM3M_OTCOPYR(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
- #endif
- #endif
-
-
- #ifndef OCOPYI_OPERATION
- #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \
- defined(NR) || defined(TR) || defined(CR) || defined(RR)
- #define OCOPYI_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
- GEMM3M_ONCOPYI(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
- #else
- #define OCOPYI_OPERATION(M, N, A, LDA, ALPHA_R, ALPHA_I, X, Y, BUFFER) \
- GEMM3M_OTCOPYI(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, ALPHA_R, ALPHA_I, BUFFER)
- #endif
- #endif
-
- #ifndef KERNEL_FUNC
- #define KERNEL_FUNC GEMM3M_KERNEL
- #endif
-
- #ifndef KERNEL_OPERATION
- #define KERNEL_OPERATION(M, N, K, ALPHA_R, ALPHA_I, SA, SB, C, LDC, X, Y) \
- KERNEL_FUNC(M, N, K, ALPHA_R, ALPHA_I, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
- #endif
-
- #ifndef A
- #define A args -> a
- #endif
- #ifndef LDA
- #define LDA args -> lda
- #endif
- #ifndef B
- #define B args -> b
- #endif
- #ifndef LDB
- #define LDB args -> ldb
- #endif
- #ifndef C
- #define C args -> c
- #endif
- #ifndef LDC
- #define LDC args -> ldc
- #endif
- #ifndef M
- #define M args -> m
- #endif
- #ifndef N
- #define N args -> n
- #endif
- #ifndef K
- #define K args -> k
- #endif
-
- #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
- #define ALPHA1 ONE
- #define ALPHA2 ONE
- #define ALPHA5 ZERO
- #define ALPHA6 ONE
-
- #define ALPHA7 ONE
- #define ALPHA8 ZERO
- #define ALPHA11 ONE
- #define ALPHA12 -ONE
-
- #define ALPHA13 ZERO
- #define ALPHA14 ONE
- #define ALPHA17 -ONE
- #define ALPHA18 -ONE
- #endif
-
- #if defined(NR) || defined(NC) || defined(TR) || defined(TC)
- #define ALPHA1 ONE
- #define ALPHA2 ONE
- #define ALPHA5 ONE
- #define ALPHA6 ZERO
-
- #define ALPHA7 ZERO
- #define ALPHA8 ONE
- #define ALPHA11 -ONE
- #define ALPHA12 -ONE
-
- #define ALPHA13 ONE
- #define ALPHA14 ZERO
- #define ALPHA17 -ONE
- #define ALPHA18 ONE
- #endif
-
- #if defined(RN) || defined(RT) || defined(CN) || defined(CT)
- #define ALPHA1 ONE
- #define ALPHA2 ONE
- #define ALPHA5 ONE
- #define ALPHA6 ZERO
-
- #define ALPHA7 ZERO
- #define ALPHA8 ONE
- #define ALPHA11 -ONE
- #define ALPHA12 ONE
-
- #define ALPHA13 ONE
- #define ALPHA14 ZERO
- #define ALPHA17 -ONE
- #define ALPHA18 -ONE
- #endif
-
- #if defined(RR) || defined(RC) || defined(CR) || defined(CC)
- #define ALPHA1 ONE
- #define ALPHA2 ONE
- #define ALPHA5 ZERO
- #define ALPHA6 -ONE
-
- #define ALPHA7 ONE
- #define ALPHA8 ZERO
- #define ALPHA11 ONE
- #define ALPHA12 ONE
-
- #define ALPHA13 ZERO
- #define ALPHA14 ONE
- #define ALPHA17 -ONE
- #define ALPHA18 ONE
- #endif
-
- #ifdef TIMING
- #define START_RPCC() rpcc_counter = rpcc()
- #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
- #else
- #define START_RPCC()
- #define STOP_RPCC(COUNTER)
- #endif
-
- int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n,
- FLOAT *sa, FLOAT *sb, BLASLONG dummy){
- BLASLONG k, lda, ldb, ldc;
- FLOAT *alpha, *beta;
- FLOAT *a, *b, *c;
- BLASLONG m_from, m_to, n_from, n_to;
-
- BLASLONG ls, is, js, jjs;
- BLASLONG min_l, min_i, min_j, min_jj;
-
- #ifdef TIMING
- BLASULONG rpcc_counter;
- BLASULONG BLASLONG innercost = 0;
- BLASULONG BLASLONG outercost = 0;
- BLASULONG BLASLONG kernelcost = 0;
- double total;
- #endif
-
- k = K;
-
- a = (FLOAT *)A;
- b = (FLOAT *)B;
- c = (FLOAT *)C;
-
- lda = LDA;
- ldb = LDB;
- ldc = LDC;
-
- alpha = (FLOAT *)args -> alpha;
- beta = (FLOAT *)args -> beta;
-
- m_from = 0;
- m_to = M;
-
- if (range_m) {
- m_from = *(((BLASLONG *)range_m) + 0);
- m_to = *(((BLASLONG *)range_m) + 1);
- }
-
- n_from = 0;
- n_to = N;
-
- if (range_n) {
- n_from = *(((BLASLONG *)range_n) + 0);
- n_to = *(((BLASLONG *)range_n) + 1);
- }
-
- if (beta) {
- #ifndef COMPLEX
- if (beta[0] != ONE)
- #else
- if ((beta[0] != ONE) || (beta[1] != ZERO))
- #endif
- BETA_OPERATION(m_from, m_to, n_from, n_to, beta, c, ldc);
- }
-
- if ((k == 0) || (alpha == NULL)) return 0;
-
- if ((alpha[0] == ZERO)
- #ifdef COMPLEX
- && (alpha[1] == ZERO)
- #endif
- ) return 0;
-
- #if 0
- printf("GEMM: M_from : %ld M_to : %ld N_from : %ld N_to : %ld k : %ld\n", m_from, m_to, n_from, n_to, k);
- printf("GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM3M_P, (BLASLONG)GEMM3M_Q, (BLASLONG)GEMM3M_R);
- printf("GEMM: SA .. %p SB .. %p\n", sa, sb);
- #endif
-
- #ifdef TIMING
- innercost = 0;
- outercost = 0;
- kernelcost = 0;
- #endif
-
- for(js = n_from; js < n_to; js += GEMM3M_R){
- min_j = n_to - js;
- if (min_j > GEMM3M_R) min_j = GEMM3M_R;
-
- for(ls = 0; ls < k; ls += min_l){
- min_l = k - ls;
-
- if (min_l >= GEMM3M_Q * 2) {
- min_l = GEMM3M_Q;
- } else {
- if (min_l > GEMM3M_Q) {
- min_l = (min_l + 1) / 2;
- #ifdef UNROLL_X
- min_l = ((min_l + UNROLL_X - 1)/UNROLL_X) * UNROLL_X;
- #endif
- }
- }
-
- min_i = m_to - m_from;
- if (min_i >= GEMM3M_P * 2) {
- min_i = GEMM3M_P;
- } else {
- if (min_i > GEMM3M_P) {
- min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
- }
- }
-
- START_RPCC();
-
- ICOPYB_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
-
- STOP_RPCC(innercost);
-
- for(jjs = js; jjs < js + min_j; jjs += min_jj){
- min_jj = min_j + js - jjs;
- if (min_jj > GEMM3M_UNROLL_N*3) min_jj = GEMM3M_UNROLL_N*3;
-
- START_RPCC();
-
- #if defined(NN) || defined(NT) || defined(TN) || defined(TT) || defined(RN) || defined(RT) || defined(CN) || defined(CT)
- OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #else
- OCOPYB_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #endif
-
- STOP_RPCC(outercost);
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA5, ALPHA6,
- sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
-
- STOP_RPCC(kernelcost);
-
- }
-
- for(is = m_from + min_i; is < m_to; is += min_i){
- min_i = m_to - is;
- if (min_i >= GEMM3M_P * 2) {
- min_i = GEMM3M_P;
- } else
- if (min_i > GEMM3M_P) {
- min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
- }
-
- START_RPCC();
-
- ICOPYB_OPERATION(min_l, min_i, a, lda, ls, is, sa);
-
- STOP_RPCC(innercost);
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, min_j, min_l, ALPHA5, ALPHA6, sa, sb, c, ldc, is, js);
-
- STOP_RPCC(kernelcost);
- }
-
- min_i = m_to - m_from;
- if (min_i >= GEMM3M_P * 2) {
- min_i = GEMM3M_P;
- } else {
- if (min_i > GEMM3M_P) {
- min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
- }
- }
-
- START_RPCC();
-
- ICOPYR_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
-
- STOP_RPCC(innercost);
-
- for(jjs = js; jjs < js + min_j; jjs += min_jj){
- min_jj = min_j + js - jjs;
- if (min_jj > GEMM3M_UNROLL_N*3) min_jj = GEMM3M_UNROLL_N*3;
-
- START_RPCC();
-
- #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
- OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #elif defined(RR) || defined(RC) || defined(CR) || defined(CC)
- OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #elif defined(RN) || defined(RT) || defined(CN) || defined(CT)
- OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #else
- OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #endif
-
- STOP_RPCC(outercost);
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA11, ALPHA12,
- sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
-
- STOP_RPCC(kernelcost);
-
- }
-
- for(is = m_from + min_i; is < m_to; is += min_i){
- min_i = m_to - is;
- if (min_i >= GEMM3M_P * 2) {
- min_i = GEMM3M_P;
- } else
- if (min_i > GEMM3M_P) {
- min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
- }
-
- START_RPCC();
-
- ICOPYR_OPERATION(min_l, min_i, a, lda, ls, is, sa);
-
- STOP_RPCC(innercost);
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, min_j, min_l, ALPHA11, ALPHA12, sa, sb, c, ldc, is, js);
-
- STOP_RPCC(kernelcost);
-
- }
-
- min_i = m_to - m_from;
- if (min_i >= GEMM3M_P * 2) {
- min_i = GEMM3M_P;
- } else {
- if (min_i > GEMM3M_P) {
- min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
- }
- }
-
- START_RPCC();
-
- ICOPYI_OPERATION(min_l, min_i, a, lda, ls, m_from, sa);
-
- STOP_RPCC(innercost);
-
- for(jjs = js; jjs < js + min_j; jjs += min_jj){
- min_jj = min_j + js - jjs;
- if (min_jj > GEMM3M_UNROLL_N*3) min_jj = GEMM3M_UNROLL_N*3;
-
- START_RPCC();
-
- #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
- OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #elif defined(RR) || defined(RC) || defined(CR) || defined(CC)
- OCOPYI_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #elif defined(RN) || defined(RT) || defined(CN) || defined(CT)
- OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #else
- OCOPYR_OPERATION(min_l, min_jj, b, ldb, alpha[0], -alpha[1], ls, jjs, sb + min_l * (jjs - js));
- #endif
-
- STOP_RPCC(outercost);
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, min_jj, min_l, ALPHA17, ALPHA18,
- sa, sb + min_l * (jjs - js), c, ldc, m_from, jjs);
-
- STOP_RPCC(kernelcost);
-
- }
-
- for(is = m_from + min_i; is < m_to; is += min_i){
- min_i = m_to - is;
- if (min_i >= GEMM3M_P * 2) {
- min_i = GEMM3M_P;
- } else
- if (min_i > GEMM3M_P) {
- min_i = ((min_i / 2 + GEMM3M_UNROLL_M - 1)/GEMM3M_UNROLL_M) * GEMM3M_UNROLL_M;
- }
-
- START_RPCC();
-
- ICOPYI_OPERATION(min_l, min_i, a, lda, ls, is, sa);
-
- STOP_RPCC(innercost);
-
- START_RPCC();
-
- KERNEL_OPERATION(min_i, min_j, min_l, ALPHA17, ALPHA18, sa, sb, c, ldc, is, js);
-
- STOP_RPCC(kernelcost);
-
- }
-
- } /* end of js */
- } /* end of ls */
-
-
- #ifdef TIMING
- total = (double)outercost + (double)innercost + (double)kernelcost;
-
- printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f\n",
- innercost / total * 100., outercost / total * 100.,
- kernelcost / total * 100.);
-
- printf( " Total %10.3f%% %10.3f MFlops\n",
- ((double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost / 2 * 100,
- 2400. * (2. * (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k) / (double)kernelcost);
- #endif
-
- return 0;
- }
|