You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

tbmv_thread.c 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include <stdlib.h>
  40. #include "common.h"
  41. #include "symcopy.h"
  42. #ifndef COMPLEX
  43. #ifndef TRANSA
  44. #undef TRANS
  45. #else
  46. #define TRANS
  47. #endif
  48. #define MYDOT DOTU_K
  49. #define MYAXPY AXPYU_K
  50. #else
  51. #if (TRANSA == 1) || (TRANSA == 3)
  52. #undef TRANS
  53. #else
  54. #define TRANS
  55. #endif
  56. #if (TRANSA == 1) || (TRANSA == 2)
  57. #define MYAXPY AXPYU_K
  58. #define MYDOT DOTU_K
  59. #else
  60. #define MYAXPY AXPYC_K
  61. #define MYDOT DOTC_K
  62. #endif
  63. #endif
  64. static int trmv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
  65. FLOAT *a, *x, *y;
  66. BLASLONG k, lda, incx;
  67. BLASLONG n_from, n_to;
  68. BLASLONG i, length;
  69. #ifdef TRANS
  70. #ifndef COMPLEX
  71. FLOAT result;
  72. #else
  73. OPENBLAS_COMPLEX_FLOAT result;
  74. #endif
  75. #endif
  76. #if defined(COMPLEX) && !defined(UNIT)
  77. FLOAT ar, ai, xr, xi;
  78. #endif
  79. a = (FLOAT *)args -> a;
  80. x = (FLOAT *)args -> b;
  81. y = (FLOAT *)args -> c;
  82. k = args -> k;
  83. n_from = 0;
  84. n_to = args -> n;
  85. lda = args -> lda;
  86. incx = args -> ldb;
  87. if (range_m) {
  88. n_from = *(range_m + 0);
  89. n_to = *(range_m + 1);
  90. a += n_from * lda * COMPSIZE;
  91. }
  92. if (incx != 1) {
  93. COPY_K(args -> n, x, incx, buffer, 1);
  94. x = buffer;
  95. // buffer += ((args -> n * COMPSIZE + 1023) & ~1023);
  96. }
  97. if (range_n) y += *range_n * COMPSIZE;
  98. SCAL_K(args -> n, 0, 0, ZERO,
  99. #ifdef COMPLEX
  100. ZERO,
  101. #endif
  102. y, 1, NULL, 0, NULL, 0);
  103. for (i = n_from; i < n_to; i++) {
  104. #ifndef LOWER
  105. length = i;
  106. #else
  107. length = args -> n - i - 1;
  108. #endif
  109. if (length > k) length = k;
  110. #ifndef LOWER
  111. if (length > 0) {
  112. #ifndef TRANS
  113. MYAXPY(length, 0, 0,
  114. *(x + i * COMPSIZE + 0),
  115. #ifdef COMPLEX
  116. *(x + i * COMPSIZE + 1),
  117. #endif
  118. a + (k - length) * COMPSIZE, 1, y + (i - length) * COMPSIZE, 1, NULL, 0);
  119. #else
  120. result = MYDOT(length, a + (k - length) * COMPSIZE, 1, x + (i - length) * COMPSIZE, 1);
  121. #ifndef COMPLEX
  122. *(y + i * COMPSIZE + 0) += result;
  123. #else
  124. *(y + i * COMPSIZE + 0) += CREAL(result);
  125. *(y + i * COMPSIZE + 1) += CIMAG(result);
  126. #endif
  127. #endif
  128. }
  129. #endif
  130. #ifndef COMPLEX
  131. #ifdef UNIT
  132. *(y + i * COMPSIZE) += *(x + i * COMPSIZE);
  133. #else
  134. #ifndef LOWER
  135. *(y + i * COMPSIZE) += *(a + k * COMPSIZE) * *(x + i * COMPSIZE);
  136. #else
  137. *(y + i * COMPSIZE) += *(a + 0 * COMPSIZE) * *(x + i * COMPSIZE);
  138. #endif
  139. #endif
  140. #else
  141. #ifdef UNIT
  142. *(y + i * COMPSIZE + 0) += *(x + i * COMPSIZE + 0);
  143. *(y + i * COMPSIZE + 1) += *(x + i * COMPSIZE + 1);
  144. #else
  145. #ifndef LOWER
  146. ar = *(a + k * COMPSIZE + 0);
  147. ai = *(a + k * COMPSIZE + 1);
  148. #else
  149. ar = *(a + 0);
  150. ai = *(a + 1);
  151. #endif
  152. xr = *(x + i * COMPSIZE + 0);
  153. xi = *(x + i * COMPSIZE + 1);
  154. #if (TRANSA == 1) || (TRANSA == 2)
  155. *(y + i * COMPSIZE + 0) += ar * xr - ai * xi;
  156. *(y + i * COMPSIZE + 1) += ar * xi + ai * xr;
  157. #else
  158. *(y + i * COMPSIZE + 0) += ar * xr + ai * xi;
  159. *(y + i * COMPSIZE + 1) += ar * xi - ai * xr;
  160. #endif
  161. #endif
  162. #endif
  163. #ifdef LOWER
  164. if (length > 0) {
  165. #ifndef TRANS
  166. MYAXPY(length, 0, 0,
  167. *(x + i * COMPSIZE + 0),
  168. #ifdef COMPLEX
  169. *(x + i * COMPSIZE + 1),
  170. #endif
  171. a + COMPSIZE, 1, y + (i + 1) * COMPSIZE, 1, NULL, 0);
  172. #else
  173. result = MYDOT(length, a + COMPSIZE, 1, x + (i + 1) * COMPSIZE, 1);
  174. #ifndef COMPLEX
  175. *(y + i * COMPSIZE + 0) += result;
  176. #else
  177. *(y + i * COMPSIZE + 0) += CREAL(result);
  178. *(y + i * COMPSIZE + 1) += CIMAG(result);
  179. #endif
  180. #endif
  181. }
  182. #endif
  183. a += lda * COMPSIZE;
  184. }
  185. return 0;
  186. }
  187. #ifndef COMPLEX
  188. int CNAME(BLASLONG n, BLASLONG k, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *buffer, int nthreads){
  189. #else
  190. int CNAME(BLASLONG n, BLASLONG k, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *buffer, int nthreads){
  191. #endif
  192. blas_arg_t args;
  193. blas_queue_t queue[MAX_CPU_NUMBER];
  194. BLASLONG range_m[MAX_CPU_NUMBER + 1];
  195. BLASLONG range_n[MAX_CPU_NUMBER + 1];
  196. BLASLONG width, i, num_cpu;
  197. double dnum;
  198. int mask = 7;
  199. #ifdef SMP
  200. #ifndef COMPLEX
  201. #ifdef XDOUBLE
  202. int mode = BLAS_XDOUBLE | BLAS_REAL;
  203. #elif defined(DOUBLE)
  204. int mode = BLAS_DOUBLE | BLAS_REAL;
  205. #else
  206. int mode = BLAS_SINGLE | BLAS_REAL;
  207. #endif
  208. #else
  209. #ifdef XDOUBLE
  210. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  211. #elif defined(DOUBLE)
  212. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  213. #else
  214. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  215. #endif
  216. #endif
  217. #endif
  218. args.n = n;
  219. args.k = k;
  220. args.a = (void *)a;
  221. args.b = (void *)x;
  222. args.c = (void *)(buffer);
  223. args.lda = lda;
  224. args.ldb = incx;
  225. dnum = (double)n * (double)n / (double)nthreads;
  226. num_cpu = 0;
  227. if (n < 2 * k) {
  228. #ifndef LOWER
  229. range_m[MAX_CPU_NUMBER] = n;
  230. i = 0;
  231. while (i < n){
  232. if (nthreads - num_cpu > 1) {
  233. double di = (double)(n - i);
  234. if (di * di - dnum > 0) {
  235. width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
  236. } else {
  237. width = n - i;
  238. }
  239. if (width < 16) width = 16;
  240. if (width > n - i) width = n - i;
  241. } else {
  242. width = n - i;
  243. }
  244. range_m[MAX_CPU_NUMBER - num_cpu - 1] = range_m[MAX_CPU_NUMBER - num_cpu] - width;
  245. range_n[num_cpu] = num_cpu * (((n + 15) & ~15) + 16);
  246. if (range_n[num_cpu] > n * num_cpu) range_n[num_cpu] = n * num_cpu;
  247. queue[num_cpu].mode = mode;
  248. queue[num_cpu].routine = trmv_kernel;
  249. queue[num_cpu].args = &args;
  250. queue[num_cpu].range_m = &range_m[MAX_CPU_NUMBER - num_cpu - 1];
  251. queue[num_cpu].range_n = &range_n[num_cpu];
  252. queue[num_cpu].sa = NULL;
  253. queue[num_cpu].sb = NULL;
  254. queue[num_cpu].next = &queue[num_cpu + 1];
  255. num_cpu ++;
  256. i += width;
  257. }
  258. #else
  259. range_m[0] = 0;
  260. i = 0;
  261. while (i < n){
  262. if (nthreads - num_cpu > 1) {
  263. double di = (double)(n - i);
  264. if (di * di - dnum > 0) {
  265. width = ((BLASLONG)(-sqrt(di * di - dnum) + di) + mask) & ~mask;
  266. } else {
  267. width = n - i;
  268. }
  269. if (width < 16) width = 16;
  270. if (width > n - i) width = n - i;
  271. } else {
  272. width = n - i;
  273. }
  274. range_m[num_cpu + 1] = range_m[num_cpu] + width;
  275. range_n[num_cpu] = num_cpu * (((n + 15) & ~15) + 16);
  276. if (range_n[num_cpu] > n * num_cpu) range_n[num_cpu] = n * num_cpu;
  277. queue[num_cpu].mode = mode;
  278. queue[num_cpu].routine = trmv_kernel;
  279. queue[num_cpu].args = &args;
  280. queue[num_cpu].range_m = &range_m[num_cpu];
  281. queue[num_cpu].range_n = &range_n[num_cpu];
  282. queue[num_cpu].sa = NULL;
  283. queue[num_cpu].sb = NULL;
  284. queue[num_cpu].next = &queue[num_cpu + 1];
  285. num_cpu ++;
  286. i += width;
  287. }
  288. #endif
  289. } else {
  290. range_m[0] = 0;
  291. i = n;
  292. while (i > 0){
  293. width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu);
  294. if (width < 4) width = 4;
  295. if (i < width) width = i;
  296. range_m[num_cpu + 1] = range_m[num_cpu] + width;
  297. range_n[num_cpu] = num_cpu * (((n + 15) & ~15) + 16);
  298. if (range_n[num_cpu] > n * num_cpu) range_n[num_cpu] = n * num_cpu;
  299. queue[num_cpu].mode = mode;
  300. queue[num_cpu].routine = trmv_kernel;
  301. queue[num_cpu].args = &args;
  302. queue[num_cpu].range_m = &range_m[num_cpu];
  303. queue[num_cpu].range_n = &range_n[num_cpu];
  304. queue[num_cpu].sa = NULL;
  305. queue[num_cpu].sb = NULL;
  306. queue[num_cpu].next = &queue[num_cpu + 1];
  307. num_cpu ++;
  308. i -= width;
  309. }
  310. }
  311. if (num_cpu) {
  312. queue[0].sa = NULL;
  313. queue[0].sb = buffer + num_cpu * (((n + 255) & ~255) + 16) * COMPSIZE;
  314. queue[num_cpu - 1].next = NULL;
  315. exec_blas(num_cpu, queue);
  316. }
  317. for (i = 1; i < num_cpu; i ++) {
  318. AXPYU_K(n, 0, 0, ONE,
  319. #ifdef COMPLEX
  320. ZERO,
  321. #endif
  322. buffer + range_n[i] * COMPSIZE, 1, buffer, 1, NULL, 0);
  323. }
  324. COPY_K(n, buffer, 1, x, incx);
  325. return 0;
  326. }