|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417 |
- !
- ! Taken from scipy/linalg
- !
- ! Shorthand notations
- !
- ! <tchar=s,d,cs,zd>
- ! <tchar2c=cs,zd>
- !
- ! <prefix2=s,d>
- ! <prefix2c=c,z>
- ! <prefix3=s,sc>
- ! <prefix4=d,dz>
- ! <prefix6=s,d,c,z,c,z>
- !
- ! <ftype2=real,double precision>
- ! <ftype2c=complex,double complex>
- ! <ftype3=real,complex>
- ! <ftype4=double precision,double complex>
- ! <ftypereal3=real,real>
- ! <ftypereal4=double precision,double precision>
- ! <ftype6=real,double precision,complex,double complex,\2,\3>
- ! <ftype6creal=real,double precision,complex,double complex,\0,\1>
- !
- ! <ctype2=float,double>
- ! <ctype2c=complex_float,complex_double>
- ! <ctype3=float,complex_float>
- ! <ctype4=double,complex_double>
- ! <ctypereal3=float,float>
- ! <ctypereal4=double,double>
- ! <ctype6=float,double,complex_float,complex_double,\2,\3>
- ! <ctype6creal=float,double,complex_float,complex_double,\0,\1>
- !
- !
- ! Level 1 BLAS
- !
-
-
- python module _flapack
- usercode '''
- #define F_INT int
- '''
-
- interface
-
-
- subroutine <prefix>axpy(n,a,x,offx,incx,y,offy,incy)
- ! Calculate z = a*x+y, where a is scalar.
-
- callstatement (*f2py_func)(&n,&a,x+offx,&incx,y+offy,&incy)
- callprotoargument F_INT*,<ctype>*,<ctype>*,F_INT*,<ctype>*,F_INT*
-
- <ftype> dimension(*), intent(in) :: x
- <ftype> dimension(*), intent(in,out,out=z) :: y
- <ftype> optional, intent(in):: a=<1.0,\0,(1.0\,0.0),\2>
- integer optional, intent(in),check(incx>0||incx<0) :: incx = 1
- integer optional, intent(in),check(incy>0||incy<0) :: incy = 1
- integer optional, intent(in),depend(x) :: offx=0
- integer optional, intent(in),depend(y) :: offy=0
- check(offx>=0 && offx<len(x)) :: offx
- check(offy>=0 && offy<len(y)) :: offy
- integer optional, intent(in),depend(x,incx,offx,y,incy,offy) :: &
- n = (len(x)-offx)/abs(incx)
- check(len(x)-offx>(n-1)*abs(incx)) :: n
- check(len(y)-offy>(n-1)*abs(incy)) :: n
-
- end subroutine <prefix>axpy
-
- function ddot(n,x,offx,incx,y,offy,incy) result (xy)
- ! Computes a vector-vector dot product.
-
- callstatement ddot_return_value = (*f2py_func)(&n,x+offx,&incx,y+offy,&incy)
- callprotoargument F_INT*,double*,F_INT*,double*,F_INT*
- intent(c) ddot
- fortranname F_FUNC(ddot,DDOT)
-
- double precision dimension(*), intent(in) :: x
- double precision dimension(*), intent(in) :: y
- double precision ddot,xy
- integer optional, intent(in),check(incx>0||incx<0) :: incx = 1
- integer optional, intent(in),check(incy>0||incy<0) :: incy = 1
- integer optional, intent(in),depend(x) :: offx=0
- integer optional, intent(in),depend(y) :: offy=0
- check(offx>=0 && offx<len(x)) :: offx
- check(offy>=0 && offy<len(y)) :: offy
- integer optional, intent(in),depend(x,incx,offx,y,incy,offy) :: &
- n = (len(x)-offx)/abs(incx)
- check(len(x)-offx>(n-1)*abs(incx)) :: n
- check(len(y)-offy>(n-1)*abs(incy)) :: n
-
- end function ddot
-
-
- function <prefix4>nrm2(n,x,offx,incx) result(n2)
-
- <ftypereal4> <prefix4>nrm2, n2
-
- callstatement <prefix4>nrm2_return_value = (*f2py_func)(&n,x+offx,&incx)
- callprotoargument F_INT*,<ctype4>*,F_INT*
- intent(c) <prefix4>nrm2
- fortranname F_FUNC(<prefix4>nrm2,<D,DZ>NRM2)
-
- <ftype4> dimension(*),intent(in) :: x
-
- integer optional, intent(in),check(incx>0) :: incx = 1
-
- integer optional,intent(in),depend(x) :: offx=0
- check(offx>=0 && offx<len(x)) :: offx
-
- integer optional,intent(in),depend(x,incx,offx) :: n = (len(x)-offx)/abs(incx)
- check(len(x)-offx>(n-1)*abs(incx)) :: n
-
- end function <prefix4>nrm2
-
-
- !
- ! Level 2 BLAS
- !
-
-
- subroutine <prefix>gemv(m,n,alpha,a,x,beta,y,offx,incx,offy,incy,trans,rows,cols,ly)
- ! Computes a matrix-vector product using a general matrix
- !
- ! y = gemv(alpha,a,x,beta=0,y=0,offx=0,incx=1,offy=0,incy=0,trans=0)
- ! Calculate y <- alpha * op(A) * x + beta * y
-
- callstatement (*f2py_func)((trans?(trans==2?"C":"T"):"N"),&m,&n,&alpha,a,&m, &
- x+offx,&incx,&beta,y+offy,&incy)
- callprotoargument char*,F_INT*,F_INT*,<ctype>*,<ctype>*,F_INT*,<ctype>*,F_INT*,<ctype>*, &
- <ctype>*,F_INT*
-
- integer optional, intent(in), check(trans>=0 && trans <=2) :: trans = 0
- integer optional, intent(in), check(incx>0||incx<0) :: incx = 1
- integer optional, intent(in), check(incy>0||incy<0) :: incy = 1
- <ftype> intent(in) :: alpha
- <ftype> intent(in), optional :: beta = <0.0,\0,(0.0\,0.0),\2>
-
- <ftype> dimension(*), intent(in) :: x
- <ftype> dimension(ly), intent(in,copy,out), depend(ly),optional :: y
- integer intent(hide), depend(incy,rows,offy) :: ly = &
- (y_capi==Py_None?1+offy+(rows-1)*abs(incy):-1)
- <ftype> dimension(m,n), intent(in) :: a
- integer depend(a), intent(hide):: m = shape(a,0)
- integer depend(a), intent(hide):: n = shape(a,1)
-
- integer optional, intent(in) :: offx=0
- integer optional, intent(in) :: offy=0
- check(offx>=0 && offx<len(x)) :: x
- check(len(x)>offx+(cols-1)*abs(incx)) :: x
- depend(offx,cols,incx) :: x
-
- check(offy>=0 && offy<len(y)) :: y
- check(len(y)>offy+(rows-1)*abs(incy)) :: y
- depend(offy,rows,incy) :: y
-
- integer depend(m,n,trans), intent(hide) :: rows = (trans?n:m)
- integer depend(m,n,trans), intent(hide) :: cols = (trans?m:n)
-
- end subroutine <prefix>gemv
-
-
- subroutine <prefix>gbmv(m,n,kl,ku,alpha,a,lda,x,incx,offx,beta,y,incy,offy,trans,ly)
- ! Performs one of the matrix-vector operations
- !
- ! y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
- ! or y := alpha*A**H*x + beta*y,
- !
- ! where alpha and beta are scalars, x and y are vectors and A is an
- ! m by n band matrix, with kl sub-diagonals and ku super-diagonals.
-
- callstatement (*f2py_func)((trans?(trans==2?"C":"T"):"N"),&m,&n,&kl,&ku,&alpha,a,&lda,x+offx,&incx,&beta,y+offy,&incy)
- callprotoargument char*,F_INT*,F_INT*,F_INT*,F_INT*,<ctype>*,<ctype>*,F_INT*,<ctype>*,F_INT*,<ctype>*,<ctype>*,F_INT*
-
- integer optional,intent(in),check(trans>=0 && trans <=2) :: trans = 0
- integer intent(in), depend(ku,kl),check(m>=ku+kl+1) :: m
- integer intent(in),check(n>=0&&n==shape(a,1)),depend(a) :: n
- integer intent(in),check(kl>=0) :: kl
- integer intent(in),check(ku>=0) :: ku
- integer intent(hide),depend(a) :: lda = MAX(shape(a,0),1)
- integer optional, intent(in),check(incx>0||incx<0) :: incx = 1
- integer optional, intent(in),check(incy>0||incy<0) :: incy = 1
- integer intent(hide),depend(m,n,incy,offy,trans) :: ly = &
- (y_capi==Py_None?1+offy+(trans==0?m-1:n-1)*abs(incy):-1)
- integer optional, intent(in) :: offx=0
- integer optional, intent(in) :: offy=0
-
- <ftype> intent(in) :: alpha
- <ftype> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2>
-
- <ftype> dimension(lda,n),intent(in) :: a
-
- <ftype> dimension(ly), intent(in,out,copy,out=yout),depend(ly),optional :: y
- check(offy>=0 && offy<len(y)) :: y
- check(len(y)>offy+(trans==0?m-1:n-1)*abs(incy)) :: y
- depend(offy,n,incy) :: y
-
- <ftype> dimension(*), intent(in) :: x
- check(offx>=0 && offx<len(x)) :: x
- check(len(x)>offx+(trans==0?n-1:m-1)*abs(incx)) :: x
- depend(offx,n,incx) :: x
-
- end subroutine <prefix>gbmv
-
-
-
- !
- ! Level 3 BLAS
- !
-
-
- subroutine <prefix>gemm(m,n,k,alpha,a,b,beta,c,trans_a,trans_b,lda,ka,ldb,kb)
- ! Computes a scalar-matrix-matrix product and adds the result to a
- ! scalar-matrix product.
- !
- ! c = gemm(alpha,a,b,beta=0,c=0,trans_a=0,trans_b=0,overwrite_c=0)
- ! Calculate C <- alpha * op(A) * op(B) + beta * C
-
- callstatement (*f2py_func)((trans_a?(trans_a==2?"C":"T"):"N"), &
- (trans_b?(trans_b==2?"C":"T"):"N"),&m,&n,&k,&alpha,a,&lda,b,&ldb,&beta,c,&m)
- callprotoargument char*,char*,F_INT*,F_INT*,F_INT*,<ctype>*,<ctype>*,F_INT*,<ctype>*, &
- F_INT*,<ctype>*,<ctype>*,F_INT*
-
- integer optional,intent(in),check(trans_a>=0 && trans_a <=2) :: trans_a = 0
- integer optional,intent(in),check(trans_b>=0 && trans_b <=2) :: trans_b = 0
- <ftype> intent(in) :: alpha
- <ftype> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2>
-
- <ftype> dimension(lda,ka),intent(in) :: a
- <ftype> dimension(ldb,kb),intent(in) :: b
- <ftype> dimension(m,n),intent(in,out,copy),depend(m,n),optional :: c
- check(shape(c,0)==m && shape(c,1)==n) :: c
-
- integer depend(a),intent(hide) :: lda = shape(a,0)
- integer depend(a),intent(hide) :: ka = shape(a,1)
- integer depend(b),intent(hide) :: ldb = shape(b,0)
- integer depend(b),intent(hide) :: kb = shape(b,1)
-
- integer depend(a,trans_a,ka,lda),intent(hide):: m = (trans_a?ka:lda)
- integer depend(a,trans_a,ka,lda),intent(hide):: k = (trans_a?lda:ka)
- integer depend(b,trans_b,kb,ldb,k),intent(hide),check(trans_b?kb==k:ldb==k) :: &
- n = (trans_b?ldb:kb)
-
- end subroutine <prefix>gemm
-
-
- subroutine <prefix6><sy,\0,\0,\0,he,he>rk(n,k,alpha,a,beta,c,trans,lower,lda,ka)
- ! performs one of the symmetric rank k operations
- ! C := alpha*A*A**T + beta*C, or C := alpha*A**T*A + beta*C,
- !
- ! c = syrk(alpha,a,beta=0,c=0,trans=0,lower=0,overwrite_c=0)
- !
- callstatement (*f2py_func)((lower?"L":"U"), &
- (trans?(trans==2?"C":"T"):"N"), &n,&k,&alpha,a,&lda,&beta,c,&n)
- callprotoargument char*,char*,F_INT*,F_INT*,<ctype6>*,<ctype6>*,F_INT*,<ctype6>*, &
- <ctype6>*,F_INT*
-
- integer optional, intent(in),check(lower==0||lower==1) :: lower = 0
- integer optional,intent(in),check(trans>=0 && trans <=2) :: trans = 0
-
- <ftype6> intent(in) :: alpha
- <ftype6> intent(in),optional :: beta = <0.0,\0,(0.0\,0.0),\2,\2,\2>
-
- <ftype6> dimension(lda,ka),intent(in) :: a
- <ftype6> dimension(n,n),intent(in,out,copy),depend(n),optional :: c
- check(shape(c,0)==n && shape(c,1)==n) :: c
-
- integer depend(a),intent(hide) :: lda = shape(a,0)
- integer depend(a),intent(hide) :: ka = shape(a,1)
-
- integer depend(a, trans, ka, lda), intent(hide) :: n = (trans ? ka : lda)
- integer depend(a, trans, ka, lda), intent(hide) :: k = (trans ? lda : ka)
-
- end subroutine <prefix6><sy,\0,\0,\0,he,he>rk
-
-
- !
- ! LAPACK
- !
-
- subroutine <prefix>gesv(n,nrhs,a,piv,b,info)
- ! lu,piv,x,info = gesv(a,b,overwrite_a=0,overwrite_b=0)
- ! Solve A * X = B.
- ! A = P * L * U
- ! U is upper diagonal triangular, L is unit lower triangular,
- ! piv pivots columns.
-
- callstatement {F_INT i;(*f2py_func)(&n,&nrhs,a,&n,piv,b,&n,&info);for(i=0;i\<n;--piv[i++]);}
- callprotoargument F_INT*,F_INT*,<ctype>*,F_INT*,F_INT*,<ctype>*,F_INT*,F_INT*
-
- integer depend(a),intent(hide):: n = shape(a,0)
- integer depend(b),intent(hide):: nrhs = shape(b,1)
- <ftype> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
- integer dimension(n),depend(n),intent(out) :: piv
- <ftype> dimension(n,nrhs),check(shape(a,0)==shape(b,0)),depend(n) :: b
- integer intent(out)::info
- intent(in,out,copy,out=x) b
- intent(in,out,copy,out=lu) a
- end subroutine <prefix>gesv
-
-
- subroutine <prefix2>gesdd(m,n,minmn,u0,u1,vt0,vt1,a,compute_uv,full_matrices,u,s,vt,work,lwork,iwork,info)
- ! u,s,vt,info = gesdd(a,compute_uv=1,lwork=..,overwrite_a=0)
- ! Compute the singular value decomposition (SVD) using divide and conquer:
- ! A = U * SIGMA * transpose(V)
- ! A - M x N matrix
- ! U - M x M matrix or min(M,N) x N if full_matrices=False
- ! SIGMA - M x N zero matrix with a main diagonal filled with min(M,N)
- ! singular values
- ! transpose(V) - N x N matrix or N x min(M,N) if full_matrices=False
-
- callstatement (*f2py_func)((compute_uv?(full_matrices?"A":"S"):"N"),&m,&n,a,&m,s,u,&u0,vt,&vt0,work,&lwork,iwork,&info)
- callprotoargument char*,F_INT*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,<ctype2>*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,F_INT*,F_INT*,F_INT*
-
- integer intent(in),optional,check(compute_uv==0||compute_uv==1):: compute_uv = 1
- integer intent(in),optional,check(full_matrices==0||full_matrices==1):: full_matrices = 1
- integer intent(hide),depend(a):: m = shape(a,0)
- integer intent(hide),depend(a):: n = shape(a,1)
- integer intent(hide),depend(m,n):: minmn = MIN(m,n)
- integer intent(hide),depend(compute_uv,minmn) :: u0 = (compute_uv?m:1)
- integer intent(hide),depend(compute_uv,minmn, full_matrices) :: u1 = (compute_uv?(full_matrices?m:minmn):1)
- integer intent(hide),depend(compute_uv,minmn, full_matrices) :: vt0 = (compute_uv?(full_matrices?n:minmn):1)
- integer intent(hide),depend(compute_uv,minmn) :: vt1 = (compute_uv?n:1)
- <ftype2> dimension(m,n),intent(in,copy,aligned8) :: a
- <ftype2> dimension(minmn),intent(out),depend(minmn) :: s
- <ftype2> dimension(u0,u1),intent(out),depend(u0, u1) :: u
- <ftype2> dimension(vt0,vt1),intent(out),depend(vt0, vt1) :: vt
- <ftype2> dimension(lwork),intent(hide,cache),depend(lwork) :: work
- integer optional,intent(in),depend(minmn,compute_uv) &
- :: lwork = max((compute_uv?4*minmn*minmn+MAX(m,n)+9*minmn:MAX(14*minmn+4,10*minmn+2+25*(25+8))+MAX(m,n)),1)
- integer intent(hide,cache),dimension(8*minmn),depend(minmn) :: iwork
- integer intent(out)::info
-
- end subroutine <prefix2>gesdd
-
- subroutine <prefix2>gesdd_lwork(m,n,minmn,u0,vt0,a,compute_uv,full_matrices,u,s,vt,work,lwork,iwork,info)
- ! LWORK computation for (S/D)GESDD
-
- fortranname <prefix2>gesdd
- callstatement (*f2py_func)((compute_uv?(full_matrices?"A":"S"):"N"),&m,&n,&a,&m,&s,&u,&u0,&vt,&vt0,&work,&lwork,&iwork,&info)
- callprotoargument char*,F_INT*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,<ctype2>*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,F_INT*,F_INT*,F_INT*
-
- integer intent(in),optional,check(compute_uv==0||compute_uv==1):: compute_uv = 1
- integer intent(in),optional,check(full_matrices==0||full_matrices==1):: full_matrices = 1
- integer intent(in) :: m
- integer intent(in) :: n
- integer intent(hide),depend(m,n):: minmn = MIN(m,n)
- integer intent(hide),depend(compute_uv,minmn) :: u0 = (compute_uv?m:1)
- integer intent(hide),depend(compute_uv,minmn, full_matrices) :: vt0 = (compute_uv?(full_matrices?n:minmn):1)
- <ftype2> intent(hide) :: a
- <ftype2> intent(hide) :: s
- <ftype2> intent(hide) :: u
- <ftype2> intent(hide) :: vt
- <ftype2> intent(out) :: work
- integer intent(hide) :: lwork = -1
- integer intent(hide) :: iwork
- integer intent(out) :: info
-
- end subroutine <prefix2>gesdd_lwork
-
-
- subroutine <prefix2>syev(compute_v,lower,n,w,a,lda,work,lwork,info)
- ! w,v,info = syev(a,compute_v=1,lower=0,lwork=3*n-1,overwrite_a=0)
- ! Compute all eigenvalues and, optionally, eigenvectors of a
- ! real symmetric matrix A.
- !
- ! Performance tip:
- ! If compute_v=0 then set also overwrite_a=1.
-
- callstatement (*f2py_func)((compute_v?"V":"N"),(lower?"L":"U"),&n,a,&lda,w,work,&lwork,&info)
- callprotoargument char*,char*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,<ctype2>*,F_INT*,F_INT*
-
- integer optional,intent(in):: compute_v = 1
- check(compute_v==1||compute_v==0) compute_v
- integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
-
- integer intent(hide),depend(a):: n = shape(a,0)
- integer intent(hide),depend(a):: lda = MAX(1,shape(a,0))
- <ftype2> dimension(n,n),check(shape(a,0)==shape(a,1)) :: a
- intent(in,copy,out,out=v) :: a
-
- <ftype2> dimension(n),intent(out),depend(n) :: w
-
- integer optional,intent(in),depend(n) :: lwork=max(3*n-1,1)
- check(lwork>=3*n-1) :: lwork
- <ftype2> dimension(lwork),intent(hide),depend(lwork) :: work
-
- integer intent(out) :: info
-
- end subroutine <prefix2>syev
-
-
- subroutine <prefix2>syev_lwork(lower,n,w,a,lda,work,lwork,info)
- ! LWORK routines for syev
-
- fortranname <prefix2>syev
-
- callstatement (*f2py_func)("N",(lower?"L":"U"),&n,&a,&lda,&w,&work,&lwork,&info)
- callprotoargument char*,char*,F_INT*,<ctype2>*,F_INT*,<ctype2>*,<ctype2>*,F_INT*,F_INT*
-
- integer intent(in):: n
- integer optional,intent(in),check(lower==0||lower==1) :: lower = 0
-
- integer intent(hide),depend(n):: lda = MAX(1, n)
- <ftype2> intent(hide):: a
- <ftype2> intent(hide):: w
- integer intent(hide):: lwork = -1
-
- <ftype2> intent(out):: work
- integer intent(out):: info
-
- end subroutine <prefix2>syev_lwork
-
- end interface
-
- end python module _flapack
-
-
-
|