You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dptt05.f 7.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. *> \brief \b DPTT05
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
  12. * FERR, BERR, RESLTS )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDB, LDX, LDXACT, N, NRHS
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), E( * ),
  19. * $ FERR( * ), RESLTS( * ), X( LDX, * ),
  20. * $ XACT( LDXACT, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> DPTT05 tests the error bounds from iterative refinement for the
  30. *> computed solution to a system of equations A*X = B, where A is a
  31. *> symmetric tridiagonal matrix of order n.
  32. *>
  33. *> RESLTS(1) = test of the error bound
  34. *> = norm(X - XACT) / ( norm(X) * FERR )
  35. *>
  36. *> A large value is returned if this ratio is not less than one.
  37. *>
  38. *> RESLTS(2) = residual from the iterative refinement routine
  39. *> = the maximum of BERR / ( NZ*EPS + (*) ), where
  40. *> (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  41. *> and NZ = max. number of nonzeros in any row of A, plus 1
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] N
  48. *> \verbatim
  49. *> N is INTEGER
  50. *> The number of rows of the matrices X, B, and XACT, and the
  51. *> order of the matrix A. N >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] NRHS
  55. *> \verbatim
  56. *> NRHS is INTEGER
  57. *> The number of columns of the matrices X, B, and XACT.
  58. *> NRHS >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] D
  62. *> \verbatim
  63. *> D is DOUBLE PRECISION array, dimension (N)
  64. *> The n diagonal elements of the tridiagonal matrix A.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] E
  68. *> \verbatim
  69. *> E is DOUBLE PRECISION array, dimension (N-1)
  70. *> The (n-1) subdiagonal elements of the tridiagonal matrix A.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] B
  74. *> \verbatim
  75. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  76. *> The right hand side vectors for the system of linear
  77. *> equations.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] LDB
  81. *> \verbatim
  82. *> LDB is INTEGER
  83. *> The leading dimension of the array B. LDB >= max(1,N).
  84. *> \endverbatim
  85. *>
  86. *> \param[in] X
  87. *> \verbatim
  88. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  89. *> The computed solution vectors. Each vector is stored as a
  90. *> column of the matrix X.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDX
  94. *> \verbatim
  95. *> LDX is INTEGER
  96. *> The leading dimension of the array X. LDX >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[in] XACT
  100. *> \verbatim
  101. *> XACT is DOUBLE PRECISION array, dimension (LDX,NRHS)
  102. *> The exact solution vectors. Each vector is stored as a
  103. *> column of the matrix XACT.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDXACT
  107. *> \verbatim
  108. *> LDXACT is INTEGER
  109. *> The leading dimension of the array XACT. LDXACT >= max(1,N).
  110. *> \endverbatim
  111. *>
  112. *> \param[in] FERR
  113. *> \verbatim
  114. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  115. *> The estimated forward error bounds for each solution vector
  116. *> X. If XTRUE is the true solution, FERR bounds the magnitude
  117. *> of the largest entry in (X - XTRUE) divided by the magnitude
  118. *> of the largest entry in X.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] BERR
  122. *> \verbatim
  123. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  124. *> The componentwise relative backward error of each solution
  125. *> vector (i.e., the smallest relative change in any entry of A
  126. *> or B that makes X an exact solution).
  127. *> \endverbatim
  128. *>
  129. *> \param[out] RESLTS
  130. *> \verbatim
  131. *> RESLTS is DOUBLE PRECISION array, dimension (2)
  132. *> The maximum over the NRHS solution vectors of the ratios:
  133. *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
  134. *> RESLTS(2) = BERR / ( NZ*EPS + (*) )
  135. *> \endverbatim
  136. *
  137. * Authors:
  138. * ========
  139. *
  140. *> \author Univ. of Tennessee
  141. *> \author Univ. of California Berkeley
  142. *> \author Univ. of Colorado Denver
  143. *> \author NAG Ltd.
  144. *
  145. *> \date November 2011
  146. *
  147. *> \ingroup double_lin
  148. *
  149. * =====================================================================
  150. SUBROUTINE DPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
  151. $ FERR, BERR, RESLTS )
  152. *
  153. * -- LAPACK test routine (version 3.4.0) --
  154. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  155. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156. * November 2011
  157. *
  158. * .. Scalar Arguments ..
  159. INTEGER LDB, LDX, LDXACT, N, NRHS
  160. * ..
  161. * .. Array Arguments ..
  162. DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), E( * ),
  163. $ FERR( * ), RESLTS( * ), X( LDX, * ),
  164. $ XACT( LDXACT, * )
  165. * ..
  166. *
  167. * =====================================================================
  168. *
  169. * .. Parameters ..
  170. DOUBLE PRECISION ZERO, ONE
  171. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  172. * ..
  173. * .. Local Scalars ..
  174. INTEGER I, IMAX, J, K, NZ
  175. DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
  176. * ..
  177. * .. External Functions ..
  178. INTEGER IDAMAX
  179. DOUBLE PRECISION DLAMCH
  180. EXTERNAL IDAMAX, DLAMCH
  181. * ..
  182. * .. Intrinsic Functions ..
  183. INTRINSIC ABS, MAX, MIN
  184. * ..
  185. * .. Executable Statements ..
  186. *
  187. * Quick exit if N = 0 or NRHS = 0.
  188. *
  189. IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
  190. RESLTS( 1 ) = ZERO
  191. RESLTS( 2 ) = ZERO
  192. RETURN
  193. END IF
  194. *
  195. EPS = DLAMCH( 'Epsilon' )
  196. UNFL = DLAMCH( 'Safe minimum' )
  197. OVFL = ONE / UNFL
  198. NZ = 4
  199. *
  200. * Test 1: Compute the maximum of
  201. * norm(X - XACT) / ( norm(X) * FERR )
  202. * over all the vectors X and XACT using the infinity-norm.
  203. *
  204. ERRBND = ZERO
  205. DO 30 J = 1, NRHS
  206. IMAX = IDAMAX( N, X( 1, J ), 1 )
  207. XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
  208. DIFF = ZERO
  209. DO 10 I = 1, N
  210. DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
  211. 10 CONTINUE
  212. *
  213. IF( XNORM.GT.ONE ) THEN
  214. GO TO 20
  215. ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
  216. GO TO 20
  217. ELSE
  218. ERRBND = ONE / EPS
  219. GO TO 30
  220. END IF
  221. *
  222. 20 CONTINUE
  223. IF( DIFF / XNORM.LE.FERR( J ) ) THEN
  224. ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
  225. ELSE
  226. ERRBND = ONE / EPS
  227. END IF
  228. 30 CONTINUE
  229. RESLTS( 1 ) = ERRBND
  230. *
  231. * Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
  232. * (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  233. *
  234. DO 50 K = 1, NRHS
  235. IF( N.EQ.1 ) THEN
  236. AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) )
  237. ELSE
  238. AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) ) +
  239. $ ABS( E( 1 )*X( 2, K ) )
  240. DO 40 I = 2, N - 1
  241. TMP = ABS( B( I, K ) ) + ABS( E( I-1 )*X( I-1, K ) ) +
  242. $ ABS( D( I )*X( I, K ) ) + ABS( E( I )*X( I+1, K ) )
  243. AXBI = MIN( AXBI, TMP )
  244. 40 CONTINUE
  245. TMP = ABS( B( N, K ) ) + ABS( E( N-1 )*X( N-1, K ) ) +
  246. $ ABS( D( N )*X( N, K ) )
  247. AXBI = MIN( AXBI, TMP )
  248. END IF
  249. TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
  250. IF( K.EQ.1 ) THEN
  251. RESLTS( 2 ) = TMP
  252. ELSE
  253. RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
  254. END IF
  255. 50 CONTINUE
  256. *
  257. RETURN
  258. *
  259. * End of DPTT05
  260. *
  261. END