You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstt21.f 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. *> \brief \b DSTT21
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
  12. * RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER KBAND, LDU, N
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), SD( * ),
  19. * $ SE( * ), U( LDU, * ), WORK( * )
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> DSTT21 checks a decomposition of the form
  29. *>
  30. *> A = U S U'
  31. *>
  32. *> where ' means transpose, A is symmetric tridiagonal, U is orthogonal,
  33. *> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
  34. *> Two tests are performed:
  35. *>
  36. *> RESULT(1) = | A - U S U' | / ( |A| n ulp )
  37. *>
  38. *> RESULT(2) = | I - UU' | / ( n ulp )
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] N
  45. *> \verbatim
  46. *> N is INTEGER
  47. *> The size of the matrix. If it is zero, DSTT21 does nothing.
  48. *> It must be at least zero.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] KBAND
  52. *> \verbatim
  53. *> KBAND is INTEGER
  54. *> The bandwidth of the matrix S. It may only be zero or one.
  55. *> If zero, then S is diagonal, and SE is not referenced. If
  56. *> one, then S is symmetric tri-diagonal.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] AD
  60. *> \verbatim
  61. *> AD is DOUBLE PRECISION array, dimension (N)
  62. *> The diagonal of the original (unfactored) matrix A. A is
  63. *> assumed to be symmetric tridiagonal.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] AE
  67. *> \verbatim
  68. *> AE is DOUBLE PRECISION array, dimension (N-1)
  69. *> The off-diagonal of the original (unfactored) matrix A. A
  70. *> is assumed to be symmetric tridiagonal. AE(1) is the (1,2)
  71. *> and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] SD
  75. *> \verbatim
  76. *> SD is DOUBLE PRECISION array, dimension (N)
  77. *> The diagonal of the (symmetric tri-) diagonal matrix S.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] SE
  81. *> \verbatim
  82. *> SE is DOUBLE PRECISION array, dimension (N-1)
  83. *> The off-diagonal of the (symmetric tri-) diagonal matrix S.
  84. *> Not referenced if KBSND=0. If KBAND=1, then AE(1) is the
  85. *> (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
  86. *> element, etc.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] U
  90. *> \verbatim
  91. *> U is DOUBLE PRECISION array, dimension (LDU, N)
  92. *> The orthogonal matrix in the decomposition.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDU
  96. *> \verbatim
  97. *> LDU is INTEGER
  98. *> The leading dimension of U. LDU must be at least N.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WORK
  102. *> \verbatim
  103. *> WORK is DOUBLE PRECISION array, dimension (N*(N+1))
  104. *> \endverbatim
  105. *>
  106. *> \param[out] RESULT
  107. *> \verbatim
  108. *> RESULT is DOUBLE PRECISION array, dimension (2)
  109. *> The values computed by the two tests described above. The
  110. *> values are currently limited to 1/ulp, to avoid overflow.
  111. *> RESULT(1) is always modified.
  112. *> \endverbatim
  113. *
  114. * Authors:
  115. * ========
  116. *
  117. *> \author Univ. of Tennessee
  118. *> \author Univ. of California Berkeley
  119. *> \author Univ. of Colorado Denver
  120. *> \author NAG Ltd.
  121. *
  122. *> \date November 2011
  123. *
  124. *> \ingroup double_eig
  125. *
  126. * =====================================================================
  127. SUBROUTINE DSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
  128. $ RESULT )
  129. *
  130. * -- LAPACK test routine (version 3.4.0) --
  131. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  132. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133. * November 2011
  134. *
  135. * .. Scalar Arguments ..
  136. INTEGER KBAND, LDU, N
  137. * ..
  138. * .. Array Arguments ..
  139. DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), SD( * ),
  140. $ SE( * ), U( LDU, * ), WORK( * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. DOUBLE PRECISION ZERO, ONE
  147. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  148. * ..
  149. * .. Local Scalars ..
  150. INTEGER J
  151. DOUBLE PRECISION ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM
  152. * ..
  153. * .. External Functions ..
  154. DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
  155. EXTERNAL DLAMCH, DLANGE, DLANSY
  156. * ..
  157. * .. External Subroutines ..
  158. EXTERNAL DGEMM, DLASET, DSYR, DSYR2
  159. * ..
  160. * .. Intrinsic Functions ..
  161. INTRINSIC ABS, DBLE, MAX, MIN
  162. * ..
  163. * .. Executable Statements ..
  164. *
  165. * 1) Constants
  166. *
  167. RESULT( 1 ) = ZERO
  168. RESULT( 2 ) = ZERO
  169. IF( N.LE.0 )
  170. $ RETURN
  171. *
  172. UNFL = DLAMCH( 'Safe minimum' )
  173. ULP = DLAMCH( 'Precision' )
  174. *
  175. * Do Test 1
  176. *
  177. * Copy A & Compute its 1-Norm:
  178. *
  179. CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
  180. *
  181. ANORM = ZERO
  182. TEMP1 = ZERO
  183. *
  184. DO 10 J = 1, N - 1
  185. WORK( ( N+1 )*( J-1 )+1 ) = AD( J )
  186. WORK( ( N+1 )*( J-1 )+2 ) = AE( J )
  187. TEMP2 = ABS( AE( J ) )
  188. ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 )
  189. TEMP1 = TEMP2
  190. 10 CONTINUE
  191. *
  192. WORK( N**2 ) = AD( N )
  193. ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL )
  194. *
  195. * Norm of A - USU'
  196. *
  197. DO 20 J = 1, N
  198. CALL DSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N )
  199. 20 CONTINUE
  200. *
  201. IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
  202. DO 30 J = 1, N - 1
  203. CALL DSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
  204. $ WORK, N )
  205. 30 CONTINUE
  206. END IF
  207. *
  208. WNORM = DLANSY( '1', 'L', N, WORK, N, WORK( N**2+1 ) )
  209. *
  210. IF( ANORM.GT.WNORM ) THEN
  211. RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
  212. ELSE
  213. IF( ANORM.LT.ONE ) THEN
  214. RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
  215. ELSE
  216. RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
  217. END IF
  218. END IF
  219. *
  220. * Do Test 2
  221. *
  222. * Compute UU' - I
  223. *
  224. CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
  225. $ N )
  226. *
  227. DO 40 J = 1, N
  228. WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
  229. 40 CONTINUE
  230. *
  231. RESULT( 2 ) = MIN( DBLE( N ), DLANGE( '1', N, N, WORK, N,
  232. $ WORK( N**2+1 ) ) ) / ( N*ULP )
  233. *
  234. RETURN
  235. *
  236. * End of DSTT21
  237. *
  238. END