You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cchkgk.f 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. *> \brief \b CCHKGK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CCHKGK( NIN, NOUT )
  12. *
  13. * .. Scalar Arguments ..
  14. * INTEGER NIN, NOUT
  15. * ..
  16. *
  17. *
  18. *> \par Purpose:
  19. * =============
  20. *>
  21. *> \verbatim
  22. *>
  23. *> CCHKGK tests CGGBAK, a routine for backward balancing of
  24. *> a matrix pair (A, B).
  25. *> \endverbatim
  26. *
  27. * Arguments:
  28. * ==========
  29. *
  30. *> \param[in] NIN
  31. *> \verbatim
  32. *> NIN is INTEGER
  33. *> The logical unit number for input. NIN > 0.
  34. *> \endverbatim
  35. *>
  36. *> \param[in] NOUT
  37. *> \verbatim
  38. *> NOUT is INTEGER
  39. *> The logical unit number for output. NOUT > 0.
  40. *> \endverbatim
  41. *
  42. * Authors:
  43. * ========
  44. *
  45. *> \author Univ. of Tennessee
  46. *> \author Univ. of California Berkeley
  47. *> \author Univ. of Colorado Denver
  48. *> \author NAG Ltd.
  49. *
  50. *> \date November 2011
  51. *
  52. *> \ingroup complex_eig
  53. *
  54. * =====================================================================
  55. SUBROUTINE CCHKGK( NIN, NOUT )
  56. *
  57. * -- LAPACK test routine (version 3.4.0) --
  58. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  59. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  60. * November 2011
  61. *
  62. * .. Scalar Arguments ..
  63. INTEGER NIN, NOUT
  64. * ..
  65. *
  66. * =====================================================================
  67. *
  68. * .. Parameters ..
  69. INTEGER LDA, LDB, LDVL, LDVR
  70. PARAMETER ( LDA = 50, LDB = 50, LDVL = 50, LDVR = 50 )
  71. INTEGER LDE, LDF, LDWORK, LRWORK
  72. PARAMETER ( LDE = 50, LDF = 50, LDWORK = 50,
  73. $ LRWORK = 6*50 )
  74. REAL ZERO
  75. PARAMETER ( ZERO = 0.0E+0 )
  76. COMPLEX CZERO, CONE
  77. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  78. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  79. * ..
  80. * .. Local Scalars ..
  81. INTEGER I, IHI, ILO, INFO, J, KNT, M, N, NINFO
  82. REAL ANORM, BNORM, EPS, RMAX, VMAX
  83. COMPLEX CDUM
  84. * ..
  85. * .. Local Arrays ..
  86. INTEGER LMAX( 4 )
  87. REAL LSCALE( LDA ), RSCALE( LDA ), RWORK( LRWORK )
  88. COMPLEX A( LDA, LDA ), AF( LDA, LDA ), B( LDB, LDB ),
  89. $ BF( LDB, LDB ), E( LDE, LDE ), F( LDF, LDF ),
  90. $ VL( LDVL, LDVL ), VLF( LDVL, LDVL ),
  91. $ VR( LDVR, LDVR ), VRF( LDVR, LDVR ),
  92. $ WORK( LDWORK, LDWORK )
  93. * ..
  94. * .. External Functions ..
  95. REAL CLANGE, SLAMCH
  96. EXTERNAL CLANGE, SLAMCH
  97. * ..
  98. * .. External Subroutines ..
  99. EXTERNAL CGEMM, CGGBAK, CGGBAL, CLACPY
  100. * ..
  101. * .. Intrinsic Functions ..
  102. INTRINSIC ABS, AIMAG, MAX, REAL
  103. * ..
  104. * .. Statement Functions ..
  105. REAL CABS1
  106. * ..
  107. * .. Statement Function definitions ..
  108. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
  109. * ..
  110. * .. Executable Statements ..
  111. *
  112. LMAX( 1 ) = 0
  113. LMAX( 2 ) = 0
  114. LMAX( 3 ) = 0
  115. LMAX( 4 ) = 0
  116. NINFO = 0
  117. KNT = 0
  118. RMAX = ZERO
  119. *
  120. EPS = SLAMCH( 'Precision' )
  121. *
  122. 10 CONTINUE
  123. READ( NIN, FMT = * )N, M
  124. IF( N.EQ.0 )
  125. $ GO TO 100
  126. *
  127. DO 20 I = 1, N
  128. READ( NIN, FMT = * )( A( I, J ), J = 1, N )
  129. 20 CONTINUE
  130. *
  131. DO 30 I = 1, N
  132. READ( NIN, FMT = * )( B( I, J ), J = 1, N )
  133. 30 CONTINUE
  134. *
  135. DO 40 I = 1, N
  136. READ( NIN, FMT = * )( VL( I, J ), J = 1, M )
  137. 40 CONTINUE
  138. *
  139. DO 50 I = 1, N
  140. READ( NIN, FMT = * )( VR( I, J ), J = 1, M )
  141. 50 CONTINUE
  142. *
  143. KNT = KNT + 1
  144. *
  145. ANORM = CLANGE( 'M', N, N, A, LDA, RWORK )
  146. BNORM = CLANGE( 'M', N, N, B, LDB, RWORK )
  147. *
  148. CALL CLACPY( 'FULL', N, N, A, LDA, AF, LDA )
  149. CALL CLACPY( 'FULL', N, N, B, LDB, BF, LDB )
  150. *
  151. CALL CGGBAL( 'B', N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
  152. $ RWORK, INFO )
  153. IF( INFO.NE.0 ) THEN
  154. NINFO = NINFO + 1
  155. LMAX( 1 ) = KNT
  156. END IF
  157. *
  158. CALL CLACPY( 'FULL', N, M, VL, LDVL, VLF, LDVL )
  159. CALL CLACPY( 'FULL', N, M, VR, LDVR, VRF, LDVR )
  160. *
  161. CALL CGGBAK( 'B', 'L', N, ILO, IHI, LSCALE, RSCALE, M, VL, LDVL,
  162. $ INFO )
  163. IF( INFO.NE.0 ) THEN
  164. NINFO = NINFO + 1
  165. LMAX( 2 ) = KNT
  166. END IF
  167. *
  168. CALL CGGBAK( 'B', 'R', N, ILO, IHI, LSCALE, RSCALE, M, VR, LDVR,
  169. $ INFO )
  170. IF( INFO.NE.0 ) THEN
  171. NINFO = NINFO + 1
  172. LMAX( 3 ) = KNT
  173. END IF
  174. *
  175. * Test of CGGBAK
  176. *
  177. * Check tilde(VL)'*A*tilde(VR) - VL'*tilde(A)*VR
  178. * where tilde(A) denotes the transformed matrix.
  179. *
  180. CALL CGEMM( 'N', 'N', N, M, N, CONE, AF, LDA, VR, LDVR, CZERO,
  181. $ WORK, LDWORK )
  182. CALL CGEMM( 'C', 'N', M, M, N, CONE, VL, LDVL, WORK, LDWORK,
  183. $ CZERO, E, LDE )
  184. *
  185. CALL CGEMM( 'N', 'N', N, M, N, CONE, A, LDA, VRF, LDVR, CZERO,
  186. $ WORK, LDWORK )
  187. CALL CGEMM( 'C', 'N', M, M, N, CONE, VLF, LDVL, WORK, LDWORK,
  188. $ CZERO, F, LDF )
  189. *
  190. VMAX = ZERO
  191. DO 70 J = 1, M
  192. DO 60 I = 1, M
  193. VMAX = MAX( VMAX, CABS1( E( I, J )-F( I, J ) ) )
  194. 60 CONTINUE
  195. 70 CONTINUE
  196. VMAX = VMAX / ( EPS*MAX( ANORM, BNORM ) )
  197. IF( VMAX.GT.RMAX ) THEN
  198. LMAX( 4 ) = KNT
  199. RMAX = VMAX
  200. END IF
  201. *
  202. * Check tilde(VL)'*B*tilde(VR) - VL'*tilde(B)*VR
  203. *
  204. CALL CGEMM( 'N', 'N', N, M, N, CONE, BF, LDB, VR, LDVR, CZERO,
  205. $ WORK, LDWORK )
  206. CALL CGEMM( 'C', 'N', M, M, N, CONE, VL, LDVL, WORK, LDWORK,
  207. $ CZERO, E, LDE )
  208. *
  209. CALL CGEMM( 'n', 'n', N, M, N, CONE, B, LDB, VRF, LDVR, CZERO,
  210. $ WORK, LDWORK )
  211. CALL CGEMM( 'C', 'N', M, M, N, CONE, VLF, LDVL, WORK, LDWORK,
  212. $ CZERO, F, LDF )
  213. *
  214. VMAX = ZERO
  215. DO 90 J = 1, M
  216. DO 80 I = 1, M
  217. VMAX = MAX( VMAX, CABS1( E( I, J )-F( I, J ) ) )
  218. 80 CONTINUE
  219. 90 CONTINUE
  220. VMAX = VMAX / ( EPS*MAX( ANORM, BNORM ) )
  221. IF( VMAX.GT.RMAX ) THEN
  222. LMAX( 4 ) = KNT
  223. RMAX = VMAX
  224. END IF
  225. *
  226. GO TO 10
  227. *
  228. 100 CONTINUE
  229. *
  230. WRITE( NOUT, FMT = 9999 )
  231. 9999 FORMAT( 1X, '.. test output of CGGBAK .. ' )
  232. *
  233. WRITE( NOUT, FMT = 9998 )RMAX
  234. 9998 FORMAT( ' value of largest test error =', E12.3 )
  235. WRITE( NOUT, FMT = 9997 )LMAX( 1 )
  236. 9997 FORMAT( ' example number where CGGBAL info is not 0 =', I4 )
  237. WRITE( NOUT, FMT = 9996 )LMAX( 2 )
  238. 9996 FORMAT( ' example number where CGGBAK(L) info is not 0 =', I4 )
  239. WRITE( NOUT, FMT = 9995 )LMAX( 3 )
  240. 9995 FORMAT( ' example number where CGGBAK(R) info is not 0 =', I4 )
  241. WRITE( NOUT, FMT = 9994 )LMAX( 4 )
  242. 9994 FORMAT( ' example number having largest error =', I4 )
  243. WRITE( NOUT, FMT = 9992 )NINFO
  244. 9992 FORMAT( ' number of examples where info is not 0 =', I4 )
  245. WRITE( NOUT, FMT = 9991 )KNT
  246. 9991 FORMAT( ' total number of examples tested =', I4 )
  247. *
  248. RETURN
  249. *
  250. * End of CCHKGK
  251. *
  252. END