You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706
  1. *> \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGEGV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgegv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgegv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgegv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
  22. * VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBVL, JOBVR
  26. * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION RWORK( * )
  30. * COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  31. * $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
  32. * $ WORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> This routine is deprecated and has been replaced by routine ZGGEV.
  42. *>
  43. *> ZGEGV computes the eigenvalues and, optionally, the left and/or right
  44. *> eigenvectors of a complex matrix pair (A,B).
  45. *> Given two square matrices A and B,
  46. *> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
  47. *> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
  48. *> that
  49. *> A*x = lambda*B*x.
  50. *>
  51. *> An alternate form is to find the eigenvalues mu and corresponding
  52. *> eigenvectors y such that
  53. *> mu*A*y = B*y.
  54. *>
  55. *> These two forms are equivalent with mu = 1/lambda and x = y if
  56. *> neither lambda nor mu is zero. In order to deal with the case that
  57. *> lambda or mu is zero or small, two values alpha and beta are returned
  58. *> for each eigenvalue, such that lambda = alpha/beta and
  59. *> mu = beta/alpha.
  60. *>
  61. *> The vectors x and y in the above equations are right eigenvectors of
  62. *> the matrix pair (A,B). Vectors u and v satisfying
  63. *> u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B
  64. *> are left eigenvectors of (A,B).
  65. *>
  66. *> Note: this routine performs "full balancing" on A and B
  67. *> \endverbatim
  68. *
  69. * Arguments:
  70. * ==========
  71. *
  72. *> \param[in] JOBVL
  73. *> \verbatim
  74. *> JOBVL is CHARACTER*1
  75. *> = 'N': do not compute the left generalized eigenvectors;
  76. *> = 'V': compute the left generalized eigenvectors (returned
  77. *> in VL).
  78. *> \endverbatim
  79. *>
  80. *> \param[in] JOBVR
  81. *> \verbatim
  82. *> JOBVR is CHARACTER*1
  83. *> = 'N': do not compute the right generalized eigenvectors;
  84. *> = 'V': compute the right generalized eigenvectors (returned
  85. *> in VR).
  86. *> \endverbatim
  87. *>
  88. *> \param[in] N
  89. *> \verbatim
  90. *> N is INTEGER
  91. *> The order of the matrices A, B, VL, and VR. N >= 0.
  92. *> \endverbatim
  93. *>
  94. *> \param[in,out] A
  95. *> \verbatim
  96. *> A is COMPLEX*16 array, dimension (LDA, N)
  97. *> On entry, the matrix A.
  98. *> If JOBVL = 'V' or JOBVR = 'V', then on exit A
  99. *> contains the Schur form of A from the generalized Schur
  100. *> factorization of the pair (A,B) after balancing. If no
  101. *> eigenvectors were computed, then only the diagonal elements
  102. *> of the Schur form will be correct. See ZGGHRD and ZHGEQZ
  103. *> for details.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDA
  107. *> \verbatim
  108. *> LDA is INTEGER
  109. *> The leading dimension of A. LDA >= max(1,N).
  110. *> \endverbatim
  111. *>
  112. *> \param[in,out] B
  113. *> \verbatim
  114. *> B is COMPLEX*16 array, dimension (LDB, N)
  115. *> On entry, the matrix B.
  116. *> If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
  117. *> upper triangular matrix obtained from B in the generalized
  118. *> Schur factorization of the pair (A,B) after balancing.
  119. *> If no eigenvectors were computed, then only the diagonal
  120. *> elements of B will be correct. See ZGGHRD and ZHGEQZ for
  121. *> details.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDB
  125. *> \verbatim
  126. *> LDB is INTEGER
  127. *> The leading dimension of B. LDB >= max(1,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] ALPHA
  131. *> \verbatim
  132. *> ALPHA is COMPLEX*16 array, dimension (N)
  133. *> The complex scalars alpha that define the eigenvalues of
  134. *> GNEP.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] BETA
  138. *> \verbatim
  139. *> BETA is COMPLEX*16 array, dimension (N)
  140. *> The complex scalars beta that define the eigenvalues of GNEP.
  141. *>
  142. *> Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
  143. *> represent the j-th eigenvalue of the matrix pair (A,B), in
  144. *> one of the forms lambda = alpha/beta or mu = beta/alpha.
  145. *> Since either lambda or mu may overflow, they should not,
  146. *> in general, be computed.
  147. *> \endverbatim
  148. *>
  149. *> \param[out] VL
  150. *> \verbatim
  151. *> VL is COMPLEX*16 array, dimension (LDVL,N)
  152. *> If JOBVL = 'V', the left eigenvectors u(j) are stored
  153. *> in the columns of VL, in the same order as their eigenvalues.
  154. *> Each eigenvector is scaled so that its largest component has
  155. *> abs(real part) + abs(imag. part) = 1, except for eigenvectors
  156. *> corresponding to an eigenvalue with alpha = beta = 0, which
  157. *> are set to zero.
  158. *> Not referenced if JOBVL = 'N'.
  159. *> \endverbatim
  160. *>
  161. *> \param[in] LDVL
  162. *> \verbatim
  163. *> LDVL is INTEGER
  164. *> The leading dimension of the matrix VL. LDVL >= 1, and
  165. *> if JOBVL = 'V', LDVL >= N.
  166. *> \endverbatim
  167. *>
  168. *> \param[out] VR
  169. *> \verbatim
  170. *> VR is COMPLEX*16 array, dimension (LDVR,N)
  171. *> If JOBVR = 'V', the right eigenvectors x(j) are stored
  172. *> in the columns of VR, in the same order as their eigenvalues.
  173. *> Each eigenvector is scaled so that its largest component has
  174. *> abs(real part) + abs(imag. part) = 1, except for eigenvectors
  175. *> corresponding to an eigenvalue with alpha = beta = 0, which
  176. *> are set to zero.
  177. *> Not referenced if JOBVR = 'N'.
  178. *> \endverbatim
  179. *>
  180. *> \param[in] LDVR
  181. *> \verbatim
  182. *> LDVR is INTEGER
  183. *> The leading dimension of the matrix VR. LDVR >= 1, and
  184. *> if JOBVR = 'V', LDVR >= N.
  185. *> \endverbatim
  186. *>
  187. *> \param[out] WORK
  188. *> \verbatim
  189. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  190. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  191. *> \endverbatim
  192. *>
  193. *> \param[in] LWORK
  194. *> \verbatim
  195. *> LWORK is INTEGER
  196. *> The dimension of the array WORK. LWORK >= max(1,2*N).
  197. *> For good performance, LWORK must generally be larger.
  198. *> To compute the optimal value of LWORK, call ILAENV to get
  199. *> blocksizes (for ZGEQRF, ZUNMQR, and ZUNGQR.) Then compute:
  200. *> NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and ZUNGQR;
  201. *> The optimal LWORK is MAX( 2*N, N*(NB+1) ).
  202. *>
  203. *> If LWORK = -1, then a workspace query is assumed; the routine
  204. *> only calculates the optimal size of the WORK array, returns
  205. *> this value as the first entry of the WORK array, and no error
  206. *> message related to LWORK is issued by XERBLA.
  207. *> \endverbatim
  208. *>
  209. *> \param[out] RWORK
  210. *> \verbatim
  211. *> RWORK is DOUBLE PRECISION array, dimension (8*N)
  212. *> \endverbatim
  213. *>
  214. *> \param[out] INFO
  215. *> \verbatim
  216. *> INFO is INTEGER
  217. *> = 0: successful exit
  218. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  219. *> =1,...,N:
  220. *> The QZ iteration failed. No eigenvectors have been
  221. *> calculated, but ALPHA(j) and BETA(j) should be
  222. *> correct for j=INFO+1,...,N.
  223. *> > N: errors that usually indicate LAPACK problems:
  224. *> =N+1: error return from ZGGBAL
  225. *> =N+2: error return from ZGEQRF
  226. *> =N+3: error return from ZUNMQR
  227. *> =N+4: error return from ZUNGQR
  228. *> =N+5: error return from ZGGHRD
  229. *> =N+6: error return from ZHGEQZ (other than failed
  230. *> iteration)
  231. *> =N+7: error return from ZTGEVC
  232. *> =N+8: error return from ZGGBAK (computing VL)
  233. *> =N+9: error return from ZGGBAK (computing VR)
  234. *> =N+10: error return from ZLASCL (various calls)
  235. *> \endverbatim
  236. *
  237. * Authors:
  238. * ========
  239. *
  240. *> \author Univ. of Tennessee
  241. *> \author Univ. of California Berkeley
  242. *> \author Univ. of Colorado Denver
  243. *> \author NAG Ltd.
  244. *
  245. *> \date November 2011
  246. *
  247. *> \ingroup complex16GEeigen
  248. *
  249. *> \par Further Details:
  250. * =====================
  251. *>
  252. *> \verbatim
  253. *>
  254. *> Balancing
  255. *> ---------
  256. *>
  257. *> This driver calls ZGGBAL to both permute and scale rows and columns
  258. *> of A and B. The permutations PL and PR are chosen so that PL*A*PR
  259. *> and PL*B*R will be upper triangular except for the diagonal blocks
  260. *> A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
  261. *> possible. The diagonal scaling matrices DL and DR are chosen so
  262. *> that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
  263. *> one (except for the elements that start out zero.)
  264. *>
  265. *> After the eigenvalues and eigenvectors of the balanced matrices
  266. *> have been computed, ZGGBAK transforms the eigenvectors back to what
  267. *> they would have been (in perfect arithmetic) if they had not been
  268. *> balanced.
  269. *>
  270. *> Contents of A and B on Exit
  271. *> -------- -- - --- - -- ----
  272. *>
  273. *> If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
  274. *> both), then on exit the arrays A and B will contain the complex Schur
  275. *> form[*] of the "balanced" versions of A and B. If no eigenvectors
  276. *> are computed, then only the diagonal blocks will be correct.
  277. *>
  278. *> [*] In other words, upper triangular form.
  279. *> \endverbatim
  280. *>
  281. * =====================================================================
  282. SUBROUTINE ZGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
  283. $ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
  284. *
  285. * -- LAPACK driver routine (version 3.4.0) --
  286. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  287. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  288. * November 2011
  289. *
  290. * .. Scalar Arguments ..
  291. CHARACTER JOBVL, JOBVR
  292. INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  293. * ..
  294. * .. Array Arguments ..
  295. DOUBLE PRECISION RWORK( * )
  296. COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ),
  297. $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
  298. $ WORK( * )
  299. * ..
  300. *
  301. * =====================================================================
  302. *
  303. * .. Parameters ..
  304. DOUBLE PRECISION ZERO, ONE
  305. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  306. COMPLEX*16 CZERO, CONE
  307. PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
  308. $ CONE = ( 1.0D0, 0.0D0 ) )
  309. * ..
  310. * .. Local Scalars ..
  311. LOGICAL ILIMIT, ILV, ILVL, ILVR, LQUERY
  312. CHARACTER CHTEMP
  313. INTEGER ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
  314. $ IN, IRIGHT, IROWS, IRWORK, ITAU, IWORK, JC, JR,
  315. $ LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3
  316. DOUBLE PRECISION ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
  317. $ BNRM1, BNRM2, EPS, SAFMAX, SAFMIN, SALFAI,
  318. $ SALFAR, SBETA, SCALE, TEMP
  319. COMPLEX*16 X
  320. * ..
  321. * .. Local Arrays ..
  322. LOGICAL LDUMMA( 1 )
  323. * ..
  324. * .. External Subroutines ..
  325. EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
  326. $ ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, ZUNMQR
  327. * ..
  328. * .. External Functions ..
  329. LOGICAL LSAME
  330. INTEGER ILAENV
  331. DOUBLE PRECISION DLAMCH, ZLANGE
  332. EXTERNAL LSAME, ILAENV, DLAMCH, ZLANGE
  333. * ..
  334. * .. Intrinsic Functions ..
  335. INTRINSIC ABS, DBLE, DCMPLX, DIMAG, INT, MAX
  336. * ..
  337. * .. Statement Functions ..
  338. DOUBLE PRECISION ABS1
  339. * ..
  340. * .. Statement Function definitions ..
  341. ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  342. * ..
  343. * .. Executable Statements ..
  344. *
  345. * Decode the input arguments
  346. *
  347. IF( LSAME( JOBVL, 'N' ) ) THEN
  348. IJOBVL = 1
  349. ILVL = .FALSE.
  350. ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  351. IJOBVL = 2
  352. ILVL = .TRUE.
  353. ELSE
  354. IJOBVL = -1
  355. ILVL = .FALSE.
  356. END IF
  357. *
  358. IF( LSAME( JOBVR, 'N' ) ) THEN
  359. IJOBVR = 1
  360. ILVR = .FALSE.
  361. ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  362. IJOBVR = 2
  363. ILVR = .TRUE.
  364. ELSE
  365. IJOBVR = -1
  366. ILVR = .FALSE.
  367. END IF
  368. ILV = ILVL .OR. ILVR
  369. *
  370. * Test the input arguments
  371. *
  372. LWKMIN = MAX( 2*N, 1 )
  373. LWKOPT = LWKMIN
  374. WORK( 1 ) = LWKOPT
  375. LQUERY = ( LWORK.EQ.-1 )
  376. INFO = 0
  377. IF( IJOBVL.LE.0 ) THEN
  378. INFO = -1
  379. ELSE IF( IJOBVR.LE.0 ) THEN
  380. INFO = -2
  381. ELSE IF( N.LT.0 ) THEN
  382. INFO = -3
  383. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  384. INFO = -5
  385. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  386. INFO = -7
  387. ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  388. INFO = -11
  389. ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  390. INFO = -13
  391. ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  392. INFO = -15
  393. END IF
  394. *
  395. IF( INFO.EQ.0 ) THEN
  396. NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 )
  397. NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 )
  398. NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 )
  399. NB = MAX( NB1, NB2, NB3 )
  400. LOPT = MAX( 2*N, N*( NB+1 ) )
  401. WORK( 1 ) = LOPT
  402. END IF
  403. *
  404. IF( INFO.NE.0 ) THEN
  405. CALL XERBLA( 'ZGEGV ', -INFO )
  406. RETURN
  407. ELSE IF( LQUERY ) THEN
  408. RETURN
  409. END IF
  410. *
  411. * Quick return if possible
  412. *
  413. IF( N.EQ.0 )
  414. $ RETURN
  415. *
  416. * Get machine constants
  417. *
  418. EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  419. SAFMIN = DLAMCH( 'S' )
  420. SAFMIN = SAFMIN + SAFMIN
  421. SAFMAX = ONE / SAFMIN
  422. *
  423. * Scale A
  424. *
  425. ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  426. ANRM1 = ANRM
  427. ANRM2 = ONE
  428. IF( ANRM.LT.ONE ) THEN
  429. IF( SAFMAX*ANRM.LT.ONE ) THEN
  430. ANRM1 = SAFMIN
  431. ANRM2 = SAFMAX*ANRM
  432. END IF
  433. END IF
  434. *
  435. IF( ANRM.GT.ZERO ) THEN
  436. CALL ZLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
  437. IF( IINFO.NE.0 ) THEN
  438. INFO = N + 10
  439. RETURN
  440. END IF
  441. END IF
  442. *
  443. * Scale B
  444. *
  445. BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  446. BNRM1 = BNRM
  447. BNRM2 = ONE
  448. IF( BNRM.LT.ONE ) THEN
  449. IF( SAFMAX*BNRM.LT.ONE ) THEN
  450. BNRM1 = SAFMIN
  451. BNRM2 = SAFMAX*BNRM
  452. END IF
  453. END IF
  454. *
  455. IF( BNRM.GT.ZERO ) THEN
  456. CALL ZLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
  457. IF( IINFO.NE.0 ) THEN
  458. INFO = N + 10
  459. RETURN
  460. END IF
  461. END IF
  462. *
  463. * Permute the matrix to make it more nearly triangular
  464. * Also "balance" the matrix.
  465. *
  466. ILEFT = 1
  467. IRIGHT = N + 1
  468. IRWORK = IRIGHT + N
  469. CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  470. $ RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
  471. IF( IINFO.NE.0 ) THEN
  472. INFO = N + 1
  473. GO TO 80
  474. END IF
  475. *
  476. * Reduce B to triangular form, and initialize VL and/or VR
  477. *
  478. IROWS = IHI + 1 - ILO
  479. IF( ILV ) THEN
  480. ICOLS = N + 1 - ILO
  481. ELSE
  482. ICOLS = IROWS
  483. END IF
  484. ITAU = 1
  485. IWORK = ITAU + IROWS
  486. CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  487. $ WORK( IWORK ), LWORK+1-IWORK, IINFO )
  488. IF( IINFO.GE.0 )
  489. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  490. IF( IINFO.NE.0 ) THEN
  491. INFO = N + 2
  492. GO TO 80
  493. END IF
  494. *
  495. CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  496. $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
  497. $ LWORK+1-IWORK, IINFO )
  498. IF( IINFO.GE.0 )
  499. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  500. IF( IINFO.NE.0 ) THEN
  501. INFO = N + 3
  502. GO TO 80
  503. END IF
  504. *
  505. IF( ILVL ) THEN
  506. CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
  507. CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  508. $ VL( ILO+1, ILO ), LDVL )
  509. CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  510. $ WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
  511. $ IINFO )
  512. IF( IINFO.GE.0 )
  513. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  514. IF( IINFO.NE.0 ) THEN
  515. INFO = N + 4
  516. GO TO 80
  517. END IF
  518. END IF
  519. *
  520. IF( ILVR )
  521. $ CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
  522. *
  523. * Reduce to generalized Hessenberg form
  524. *
  525. IF( ILV ) THEN
  526. *
  527. * Eigenvectors requested -- work on whole matrix.
  528. *
  529. CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  530. $ LDVL, VR, LDVR, IINFO )
  531. ELSE
  532. CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  533. $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
  534. END IF
  535. IF( IINFO.NE.0 ) THEN
  536. INFO = N + 5
  537. GO TO 80
  538. END IF
  539. *
  540. * Perform QZ algorithm
  541. *
  542. IWORK = ITAU
  543. IF( ILV ) THEN
  544. CHTEMP = 'S'
  545. ELSE
  546. CHTEMP = 'E'
  547. END IF
  548. CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  549. $ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWORK ),
  550. $ LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
  551. IF( IINFO.GE.0 )
  552. $ LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  553. IF( IINFO.NE.0 ) THEN
  554. IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
  555. INFO = IINFO
  556. ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
  557. INFO = IINFO - N
  558. ELSE
  559. INFO = N + 6
  560. END IF
  561. GO TO 80
  562. END IF
  563. *
  564. IF( ILV ) THEN
  565. *
  566. * Compute Eigenvectors
  567. *
  568. IF( ILVL ) THEN
  569. IF( ILVR ) THEN
  570. CHTEMP = 'B'
  571. ELSE
  572. CHTEMP = 'L'
  573. END IF
  574. ELSE
  575. CHTEMP = 'R'
  576. END IF
  577. *
  578. CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
  579. $ VR, LDVR, N, IN, WORK( IWORK ), RWORK( IRWORK ),
  580. $ IINFO )
  581. IF( IINFO.NE.0 ) THEN
  582. INFO = N + 7
  583. GO TO 80
  584. END IF
  585. *
  586. * Undo balancing on VL and VR, rescale
  587. *
  588. IF( ILVL ) THEN
  589. CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  590. $ RWORK( IRIGHT ), N, VL, LDVL, IINFO )
  591. IF( IINFO.NE.0 ) THEN
  592. INFO = N + 8
  593. GO TO 80
  594. END IF
  595. DO 30 JC = 1, N
  596. TEMP = ZERO
  597. DO 10 JR = 1, N
  598. TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
  599. 10 CONTINUE
  600. IF( TEMP.LT.SAFMIN )
  601. $ GO TO 30
  602. TEMP = ONE / TEMP
  603. DO 20 JR = 1, N
  604. VL( JR, JC ) = VL( JR, JC )*TEMP
  605. 20 CONTINUE
  606. 30 CONTINUE
  607. END IF
  608. IF( ILVR ) THEN
  609. CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  610. $ RWORK( IRIGHT ), N, VR, LDVR, IINFO )
  611. IF( IINFO.NE.0 ) THEN
  612. INFO = N + 9
  613. GO TO 80
  614. END IF
  615. DO 60 JC = 1, N
  616. TEMP = ZERO
  617. DO 40 JR = 1, N
  618. TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
  619. 40 CONTINUE
  620. IF( TEMP.LT.SAFMIN )
  621. $ GO TO 60
  622. TEMP = ONE / TEMP
  623. DO 50 JR = 1, N
  624. VR( JR, JC ) = VR( JR, JC )*TEMP
  625. 50 CONTINUE
  626. 60 CONTINUE
  627. END IF
  628. *
  629. * End of eigenvector calculation
  630. *
  631. END IF
  632. *
  633. * Undo scaling in alpha, beta
  634. *
  635. * Note: this does not give the alpha and beta for the unscaled
  636. * problem.
  637. *
  638. * Un-scaling is limited to avoid underflow in alpha and beta
  639. * if they are significant.
  640. *
  641. DO 70 JC = 1, N
  642. ABSAR = ABS( DBLE( ALPHA( JC ) ) )
  643. ABSAI = ABS( DIMAG( ALPHA( JC ) ) )
  644. ABSB = ABS( DBLE( BETA( JC ) ) )
  645. SALFAR = ANRM*DBLE( ALPHA( JC ) )
  646. SALFAI = ANRM*DIMAG( ALPHA( JC ) )
  647. SBETA = BNRM*DBLE( BETA( JC ) )
  648. ILIMIT = .FALSE.
  649. SCALE = ONE
  650. *
  651. * Check for significant underflow in imaginary part of ALPHA
  652. *
  653. IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
  654. $ MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
  655. ILIMIT = .TRUE.
  656. SCALE = ( SAFMIN / ANRM1 ) / MAX( SAFMIN, ANRM2*ABSAI )
  657. END IF
  658. *
  659. * Check for significant underflow in real part of ALPHA
  660. *
  661. IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
  662. $ MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
  663. ILIMIT = .TRUE.
  664. SCALE = MAX( SCALE, ( SAFMIN / ANRM1 ) /
  665. $ MAX( SAFMIN, ANRM2*ABSAR ) )
  666. END IF
  667. *
  668. * Check for significant underflow in BETA
  669. *
  670. IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
  671. $ MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
  672. ILIMIT = .TRUE.
  673. SCALE = MAX( SCALE, ( SAFMIN / BNRM1 ) /
  674. $ MAX( SAFMIN, BNRM2*ABSB ) )
  675. END IF
  676. *
  677. * Check for possible overflow when limiting scaling
  678. *
  679. IF( ILIMIT ) THEN
  680. TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
  681. $ ABS( SBETA ) )
  682. IF( TEMP.GT.ONE )
  683. $ SCALE = SCALE / TEMP
  684. IF( SCALE.LT.ONE )
  685. $ ILIMIT = .FALSE.
  686. END IF
  687. *
  688. * Recompute un-scaled ALPHA, BETA if necessary.
  689. *
  690. IF( ILIMIT ) THEN
  691. SALFAR = ( SCALE*DBLE( ALPHA( JC ) ) )*ANRM
  692. SALFAI = ( SCALE*DIMAG( ALPHA( JC ) ) )*ANRM
  693. SBETA = ( SCALE*BETA( JC ) )*BNRM
  694. END IF
  695. ALPHA( JC ) = DCMPLX( SALFAR, SALFAI )
  696. BETA( JC ) = SBETA
  697. 70 CONTINUE
  698. *
  699. 80 CONTINUE
  700. WORK( 1 ) = LWKOPT
  701. *
  702. RETURN
  703. *
  704. * End of ZGEGV
  705. *
  706. END