You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sopgtr.f 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. *> \brief \b SOPGTR
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SOPGTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sopgtr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sopgtr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sopgtr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDQ, N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SOPGTR generates a real orthogonal matrix Q which is defined as the
  38. *> product of n-1 elementary reflectors H(i) of order n, as returned by
  39. *> SSPTRD using packed storage:
  40. *>
  41. *> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
  42. *>
  43. *> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangular packed storage used in previous
  53. *> call to SSPTRD;
  54. *> = 'L': Lower triangular packed storage used in previous
  55. *> call to SSPTRD.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix Q. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] AP
  65. *> \verbatim
  66. *> AP is REAL array, dimension (N*(N+1)/2)
  67. *> The vectors which define the elementary reflectors, as
  68. *> returned by SSPTRD.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] TAU
  72. *> \verbatim
  73. *> TAU is REAL array, dimension (N-1)
  74. *> TAU(i) must contain the scalar factor of the elementary
  75. *> reflector H(i), as returned by SSPTRD.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] Q
  79. *> \verbatim
  80. *> Q is REAL array, dimension (LDQ,N)
  81. *> The N-by-N orthogonal matrix Q.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDQ
  85. *> \verbatim
  86. *> LDQ is INTEGER
  87. *> The leading dimension of the array Q. LDQ >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is REAL array, dimension (N-1)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] INFO
  96. *> \verbatim
  97. *> INFO is INTEGER
  98. *> = 0: successful exit
  99. *> < 0: if INFO = -i, the i-th argument had an illegal value
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \date November 2011
  111. *
  112. *> \ingroup realOTHERcomputational
  113. *
  114. * =====================================================================
  115. SUBROUTINE SOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
  116. *
  117. * -- LAPACK computational routine (version 3.4.0) --
  118. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  119. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  120. * November 2011
  121. *
  122. * .. Scalar Arguments ..
  123. CHARACTER UPLO
  124. INTEGER INFO, LDQ, N
  125. * ..
  126. * .. Array Arguments ..
  127. REAL AP( * ), Q( LDQ, * ), TAU( * ), WORK( * )
  128. * ..
  129. *
  130. * =====================================================================
  131. *
  132. * .. Parameters ..
  133. REAL ZERO, ONE
  134. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  135. * ..
  136. * .. Local Scalars ..
  137. LOGICAL UPPER
  138. INTEGER I, IINFO, IJ, J
  139. * ..
  140. * .. External Functions ..
  141. LOGICAL LSAME
  142. EXTERNAL LSAME
  143. * ..
  144. * .. External Subroutines ..
  145. EXTERNAL SORG2L, SORG2R, XERBLA
  146. * ..
  147. * .. Intrinsic Functions ..
  148. INTRINSIC MAX
  149. * ..
  150. * .. Executable Statements ..
  151. *
  152. * Test the input arguments
  153. *
  154. INFO = 0
  155. UPPER = LSAME( UPLO, 'U' )
  156. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  157. INFO = -1
  158. ELSE IF( N.LT.0 ) THEN
  159. INFO = -2
  160. ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  161. INFO = -6
  162. END IF
  163. IF( INFO.NE.0 ) THEN
  164. CALL XERBLA( 'SOPGTR', -INFO )
  165. RETURN
  166. END IF
  167. *
  168. * Quick return if possible
  169. *
  170. IF( N.EQ.0 )
  171. $ RETURN
  172. *
  173. IF( UPPER ) THEN
  174. *
  175. * Q was determined by a call to SSPTRD with UPLO = 'U'
  176. *
  177. * Unpack the vectors which define the elementary reflectors and
  178. * set the last row and column of Q equal to those of the unit
  179. * matrix
  180. *
  181. IJ = 2
  182. DO 20 J = 1, N - 1
  183. DO 10 I = 1, J - 1
  184. Q( I, J ) = AP( IJ )
  185. IJ = IJ + 1
  186. 10 CONTINUE
  187. IJ = IJ + 2
  188. Q( N, J ) = ZERO
  189. 20 CONTINUE
  190. DO 30 I = 1, N - 1
  191. Q( I, N ) = ZERO
  192. 30 CONTINUE
  193. Q( N, N ) = ONE
  194. *
  195. * Generate Q(1:n-1,1:n-1)
  196. *
  197. CALL SORG2L( N-1, N-1, N-1, Q, LDQ, TAU, WORK, IINFO )
  198. *
  199. ELSE
  200. *
  201. * Q was determined by a call to SSPTRD with UPLO = 'L'.
  202. *
  203. * Unpack the vectors which define the elementary reflectors and
  204. * set the first row and column of Q equal to those of the unit
  205. * matrix
  206. *
  207. Q( 1, 1 ) = ONE
  208. DO 40 I = 2, N
  209. Q( I, 1 ) = ZERO
  210. 40 CONTINUE
  211. IJ = 3
  212. DO 60 J = 2, N
  213. Q( 1, J ) = ZERO
  214. DO 50 I = J + 1, N
  215. Q( I, J ) = AP( IJ )
  216. IJ = IJ + 1
  217. 50 CONTINUE
  218. IJ = IJ + 2
  219. 60 CONTINUE
  220. IF( N.GT.1 ) THEN
  221. *
  222. * Generate Q(2:n,2:n)
  223. *
  224. CALL SORG2R( N-1, N-1, N-1, Q( 2, 2 ), LDQ, TAU, WORK,
  225. $ IINFO )
  226. END IF
  227. END IF
  228. RETURN
  229. *
  230. * End of SOPGTR
  231. *
  232. END