You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasq2.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. *> \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLASQ2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLASQ2( N, Z, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, N
  25. * ..
  26. * .. Array Arguments ..
  27. * REAL Z( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> SLASQ2 computes all the eigenvalues of the symmetric positive
  37. *> definite tridiagonal matrix associated with the qd array Z to high
  38. *> relative accuracy are computed to high relative accuracy, in the
  39. *> absence of denormalization, underflow and overflow.
  40. *>
  41. *> To see the relation of Z to the tridiagonal matrix, let L be a
  42. *> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
  43. *> let U be an upper bidiagonal matrix with 1's above and diagonal
  44. *> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
  45. *> symmetric tridiagonal to which it is similar.
  46. *>
  47. *> Note : SLASQ2 defines a logical variable, IEEE, which is true
  48. *> on machines which follow ieee-754 floating-point standard in their
  49. *> handling of infinities and NaNs, and false otherwise. This variable
  50. *> is passed to SLASQ3.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The number of rows and columns in the matrix. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in,out] Z
  63. *> \verbatim
  64. *> Z is REAL array, dimension ( 4*N )
  65. *> On entry Z holds the qd array. On exit, entries 1 to N hold
  66. *> the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
  67. *> trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
  68. *> N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
  69. *> holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
  70. *> shifts that failed.
  71. *> \endverbatim
  72. *>
  73. *> \param[out] INFO
  74. *> \verbatim
  75. *> INFO is INTEGER
  76. *> = 0: successful exit
  77. *> < 0: if the i-th argument is a scalar and had an illegal
  78. *> value, then INFO = -i, if the i-th argument is an
  79. *> array and the j-entry had an illegal value, then
  80. *> INFO = -(i*100+j)
  81. *> > 0: the algorithm failed
  82. *> = 1, a split was marked by a positive value in E
  83. *> = 2, current block of Z not diagonalized after 100*N
  84. *> iterations (in inner while loop). On exit Z holds
  85. *> a qd array with the same eigenvalues as the given Z.
  86. *> = 3, termination criterion of outer while loop not met
  87. *> (program created more than N unreduced blocks)
  88. *> \endverbatim
  89. *
  90. * Authors:
  91. * ========
  92. *
  93. *> \author Univ. of Tennessee
  94. *> \author Univ. of California Berkeley
  95. *> \author Univ. of Colorado Denver
  96. *> \author NAG Ltd.
  97. *
  98. *> \date September 2012
  99. *
  100. *> \ingroup auxOTHERcomputational
  101. *
  102. *> \par Further Details:
  103. * =====================
  104. *>
  105. *> \verbatim
  106. *>
  107. *> Local Variables: I0:N0 defines a current unreduced segment of Z.
  108. *> The shifts are accumulated in SIGMA. Iteration count is in ITER.
  109. *> Ping-pong is controlled by PP (alternates between 0 and 1).
  110. *> \endverbatim
  111. *>
  112. * =====================================================================
  113. SUBROUTINE SLASQ2( N, Z, INFO )
  114. *
  115. * -- LAPACK computational routine (version 3.4.2) --
  116. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  117. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  118. * September 2012
  119. *
  120. * .. Scalar Arguments ..
  121. INTEGER INFO, N
  122. * ..
  123. * .. Array Arguments ..
  124. REAL Z( * )
  125. * ..
  126. *
  127. * =====================================================================
  128. *
  129. * .. Parameters ..
  130. REAL CBIAS
  131. PARAMETER ( CBIAS = 1.50E0 )
  132. REAL ZERO, HALF, ONE, TWO, FOUR, HUNDRD
  133. PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
  134. $ TWO = 2.0E0, FOUR = 4.0E0, HUNDRD = 100.0E0 )
  135. * ..
  136. * .. Local Scalars ..
  137. LOGICAL IEEE
  138. INTEGER I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,
  139. $ KMIN, N0, NBIG, NDIV, NFAIL, PP, SPLT, TTYPE,
  140. $ I1, N1
  141. REAL D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
  142. $ DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
  143. $ QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
  144. $ TOL2, TRACE, ZMAX, TEMPE, TEMPQ
  145. * ..
  146. * .. External Subroutines ..
  147. EXTERNAL SLASQ3, SLASRT, XERBLA
  148. * ..
  149. * .. External Functions ..
  150. INTEGER ILAENV
  151. REAL SLAMCH
  152. EXTERNAL ILAENV, SLAMCH
  153. * ..
  154. * .. Intrinsic Functions ..
  155. INTRINSIC ABS, MAX, MIN, REAL, SQRT
  156. * ..
  157. * .. Executable Statements ..
  158. *
  159. * Test the input arguments.
  160. * (in case SLASQ2 is not called by SLASQ1)
  161. *
  162. INFO = 0
  163. EPS = SLAMCH( 'Precision' )
  164. SAFMIN = SLAMCH( 'Safe minimum' )
  165. TOL = EPS*HUNDRD
  166. TOL2 = TOL**2
  167. *
  168. IF( N.LT.0 ) THEN
  169. INFO = -1
  170. CALL XERBLA( 'SLASQ2', 1 )
  171. RETURN
  172. ELSE IF( N.EQ.0 ) THEN
  173. RETURN
  174. ELSE IF( N.EQ.1 ) THEN
  175. *
  176. * 1-by-1 case.
  177. *
  178. IF( Z( 1 ).LT.ZERO ) THEN
  179. INFO = -201
  180. CALL XERBLA( 'SLASQ2', 2 )
  181. END IF
  182. RETURN
  183. ELSE IF( N.EQ.2 ) THEN
  184. *
  185. * 2-by-2 case.
  186. *
  187. IF( Z( 2 ).LT.ZERO .OR. Z( 3 ).LT.ZERO ) THEN
  188. INFO = -2
  189. CALL XERBLA( 'SLASQ2', 2 )
  190. RETURN
  191. ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
  192. D = Z( 3 )
  193. Z( 3 ) = Z( 1 )
  194. Z( 1 ) = D
  195. END IF
  196. Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
  197. IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
  198. T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) )
  199. S = Z( 3 )*( Z( 2 ) / T )
  200. IF( S.LE.T ) THEN
  201. S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
  202. ELSE
  203. S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
  204. END IF
  205. T = Z( 1 ) + ( S+Z( 2 ) )
  206. Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
  207. Z( 1 ) = T
  208. END IF
  209. Z( 2 ) = Z( 3 )
  210. Z( 6 ) = Z( 2 ) + Z( 1 )
  211. RETURN
  212. END IF
  213. *
  214. * Check for negative data and compute sums of q's and e's.
  215. *
  216. Z( 2*N ) = ZERO
  217. EMIN = Z( 2 )
  218. QMAX = ZERO
  219. ZMAX = ZERO
  220. D = ZERO
  221. E = ZERO
  222. *
  223. DO 10 K = 1, 2*( N-1 ), 2
  224. IF( Z( K ).LT.ZERO ) THEN
  225. INFO = -( 200+K )
  226. CALL XERBLA( 'SLASQ2', 2 )
  227. RETURN
  228. ELSE IF( Z( K+1 ).LT.ZERO ) THEN
  229. INFO = -( 200+K+1 )
  230. CALL XERBLA( 'SLASQ2', 2 )
  231. RETURN
  232. END IF
  233. D = D + Z( K )
  234. E = E + Z( K+1 )
  235. QMAX = MAX( QMAX, Z( K ) )
  236. EMIN = MIN( EMIN, Z( K+1 ) )
  237. ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
  238. 10 CONTINUE
  239. IF( Z( 2*N-1 ).LT.ZERO ) THEN
  240. INFO = -( 200+2*N-1 )
  241. CALL XERBLA( 'SLASQ2', 2 )
  242. RETURN
  243. END IF
  244. D = D + Z( 2*N-1 )
  245. QMAX = MAX( QMAX, Z( 2*N-1 ) )
  246. ZMAX = MAX( QMAX, ZMAX )
  247. *
  248. * Check for diagonality.
  249. *
  250. IF( E.EQ.ZERO ) THEN
  251. DO 20 K = 2, N
  252. Z( K ) = Z( 2*K-1 )
  253. 20 CONTINUE
  254. CALL SLASRT( 'D', N, Z, IINFO )
  255. Z( 2*N-1 ) = D
  256. RETURN
  257. END IF
  258. *
  259. TRACE = D + E
  260. *
  261. * Check for zero data.
  262. *
  263. IF( TRACE.EQ.ZERO ) THEN
  264. Z( 2*N-1 ) = ZERO
  265. RETURN
  266. END IF
  267. *
  268. * Check whether the machine is IEEE conformable.
  269. *
  270. * IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND.
  271. * $ ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1
  272. *
  273. * [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with
  274. * some the test matrices of type 16. The double precision code is fine.
  275. *
  276. IEEE = .FALSE.
  277. *
  278. * Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
  279. *
  280. DO 30 K = 2*N, 2, -2
  281. Z( 2*K ) = ZERO
  282. Z( 2*K-1 ) = Z( K )
  283. Z( 2*K-2 ) = ZERO
  284. Z( 2*K-3 ) = Z( K-1 )
  285. 30 CONTINUE
  286. *
  287. I0 = 1
  288. N0 = N
  289. *
  290. * Reverse the qd-array, if warranted.
  291. *
  292. IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
  293. IPN4 = 4*( I0+N0 )
  294. DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
  295. TEMP = Z( I4-3 )
  296. Z( I4-3 ) = Z( IPN4-I4-3 )
  297. Z( IPN4-I4-3 ) = TEMP
  298. TEMP = Z( I4-1 )
  299. Z( I4-1 ) = Z( IPN4-I4-5 )
  300. Z( IPN4-I4-5 ) = TEMP
  301. 40 CONTINUE
  302. END IF
  303. *
  304. * Initial split checking via dqd and Li's test.
  305. *
  306. PP = 0
  307. *
  308. DO 80 K = 1, 2
  309. *
  310. D = Z( 4*N0+PP-3 )
  311. DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
  312. IF( Z( I4-1 ).LE.TOL2*D ) THEN
  313. Z( I4-1 ) = -ZERO
  314. D = Z( I4-3 )
  315. ELSE
  316. D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
  317. END IF
  318. 50 CONTINUE
  319. *
  320. * dqd maps Z to ZZ plus Li's test.
  321. *
  322. EMIN = Z( 4*I0+PP+1 )
  323. D = Z( 4*I0+PP-3 )
  324. DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
  325. Z( I4-2*PP-2 ) = D + Z( I4-1 )
  326. IF( Z( I4-1 ).LE.TOL2*D ) THEN
  327. Z( I4-1 ) = -ZERO
  328. Z( I4-2*PP-2 ) = D
  329. Z( I4-2*PP ) = ZERO
  330. D = Z( I4+1 )
  331. ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
  332. $ SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
  333. TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
  334. Z( I4-2*PP ) = Z( I4-1 )*TEMP
  335. D = D*TEMP
  336. ELSE
  337. Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
  338. D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
  339. END IF
  340. EMIN = MIN( EMIN, Z( I4-2*PP ) )
  341. 60 CONTINUE
  342. Z( 4*N0-PP-2 ) = D
  343. *
  344. * Now find qmax.
  345. *
  346. QMAX = Z( 4*I0-PP-2 )
  347. DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
  348. QMAX = MAX( QMAX, Z( I4 ) )
  349. 70 CONTINUE
  350. *
  351. * Prepare for the next iteration on K.
  352. *
  353. PP = 1 - PP
  354. 80 CONTINUE
  355. *
  356. * Initialise variables to pass to SLASQ3.
  357. *
  358. TTYPE = 0
  359. DMIN1 = ZERO
  360. DMIN2 = ZERO
  361. DN = ZERO
  362. DN1 = ZERO
  363. DN2 = ZERO
  364. G = ZERO
  365. TAU = ZERO
  366. *
  367. ITER = 2
  368. NFAIL = 0
  369. NDIV = 2*( N0-I0 )
  370. *
  371. DO 160 IWHILA = 1, N + 1
  372. IF( N0.LT.1 )
  373. $ GO TO 170
  374. *
  375. * While array unfinished do
  376. *
  377. * E(N0) holds the value of SIGMA when submatrix in I0:N0
  378. * splits from the rest of the array, but is negated.
  379. *
  380. DESIG = ZERO
  381. IF( N0.EQ.N ) THEN
  382. SIGMA = ZERO
  383. ELSE
  384. SIGMA = -Z( 4*N0-1 )
  385. END IF
  386. IF( SIGMA.LT.ZERO ) THEN
  387. INFO = 1
  388. RETURN
  389. END IF
  390. *
  391. * Find last unreduced submatrix's top index I0, find QMAX and
  392. * EMIN. Find Gershgorin-type bound if Q's much greater than E's.
  393. *
  394. EMAX = ZERO
  395. IF( N0.GT.I0 ) THEN
  396. EMIN = ABS( Z( 4*N0-5 ) )
  397. ELSE
  398. EMIN = ZERO
  399. END IF
  400. QMIN = Z( 4*N0-3 )
  401. QMAX = QMIN
  402. DO 90 I4 = 4*N0, 8, -4
  403. IF( Z( I4-5 ).LE.ZERO )
  404. $ GO TO 100
  405. IF( QMIN.GE.FOUR*EMAX ) THEN
  406. QMIN = MIN( QMIN, Z( I4-3 ) )
  407. EMAX = MAX( EMAX, Z( I4-5 ) )
  408. END IF
  409. QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
  410. EMIN = MIN( EMIN, Z( I4-5 ) )
  411. 90 CONTINUE
  412. I4 = 4
  413. *
  414. 100 CONTINUE
  415. I0 = I4 / 4
  416. PP = 0
  417. *
  418. IF( N0-I0.GT.1 ) THEN
  419. DEE = Z( 4*I0-3 )
  420. DEEMIN = DEE
  421. KMIN = I0
  422. DO 110 I4 = 4*I0+1, 4*N0-3, 4
  423. DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
  424. IF( DEE.LE.DEEMIN ) THEN
  425. DEEMIN = DEE
  426. KMIN = ( I4+3 )/4
  427. END IF
  428. 110 CONTINUE
  429. IF( (KMIN-I0)*2.LT.N0-KMIN .AND.
  430. $ DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
  431. IPN4 = 4*( I0+N0 )
  432. PP = 2
  433. DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
  434. TEMP = Z( I4-3 )
  435. Z( I4-3 ) = Z( IPN4-I4-3 )
  436. Z( IPN4-I4-3 ) = TEMP
  437. TEMP = Z( I4-2 )
  438. Z( I4-2 ) = Z( IPN4-I4-2 )
  439. Z( IPN4-I4-2 ) = TEMP
  440. TEMP = Z( I4-1 )
  441. Z( I4-1 ) = Z( IPN4-I4-5 )
  442. Z( IPN4-I4-5 ) = TEMP
  443. TEMP = Z( I4 )
  444. Z( I4 ) = Z( IPN4-I4-4 )
  445. Z( IPN4-I4-4 ) = TEMP
  446. 120 CONTINUE
  447. END IF
  448. END IF
  449. *
  450. * Put -(initial shift) into DMIN.
  451. *
  452. DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
  453. *
  454. * Now I0:N0 is unreduced.
  455. * PP = 0 for ping, PP = 1 for pong.
  456. * PP = 2 indicates that flipping was applied to the Z array and
  457. * and that the tests for deflation upon entry in SLASQ3
  458. * should not be performed.
  459. *
  460. NBIG = 100*( N0-I0+1 )
  461. DO 140 IWHILB = 1, NBIG
  462. IF( I0.GT.N0 )
  463. $ GO TO 150
  464. *
  465. * While submatrix unfinished take a good dqds step.
  466. *
  467. CALL SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
  468. $ ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
  469. $ DN2, G, TAU )
  470. *
  471. PP = 1 - PP
  472. *
  473. * When EMIN is very small check for splits.
  474. *
  475. IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
  476. IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
  477. $ Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
  478. SPLT = I0 - 1
  479. QMAX = Z( 4*I0-3 )
  480. EMIN = Z( 4*I0-1 )
  481. OLDEMN = Z( 4*I0 )
  482. DO 130 I4 = 4*I0, 4*( N0-3 ), 4
  483. IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
  484. $ Z( I4-1 ).LE.TOL2*SIGMA ) THEN
  485. Z( I4-1 ) = -SIGMA
  486. SPLT = I4 / 4
  487. QMAX = ZERO
  488. EMIN = Z( I4+3 )
  489. OLDEMN = Z( I4+4 )
  490. ELSE
  491. QMAX = MAX( QMAX, Z( I4+1 ) )
  492. EMIN = MIN( EMIN, Z( I4-1 ) )
  493. OLDEMN = MIN( OLDEMN, Z( I4 ) )
  494. END IF
  495. 130 CONTINUE
  496. Z( 4*N0-1 ) = EMIN
  497. Z( 4*N0 ) = OLDEMN
  498. I0 = SPLT + 1
  499. END IF
  500. END IF
  501. *
  502. 140 CONTINUE
  503. *
  504. INFO = 2
  505. *
  506. * Maximum number of iterations exceeded, restore the shift
  507. * SIGMA and place the new d's and e's in a qd array.
  508. * This might need to be done for several blocks
  509. *
  510. I1 = I0
  511. N1 = N0
  512. 145 CONTINUE
  513. TEMPQ = Z( 4*I0-3 )
  514. Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
  515. DO K = I0+1, N0
  516. TEMPE = Z( 4*K-5 )
  517. Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
  518. TEMPQ = Z( 4*K-3 )
  519. Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
  520. END DO
  521. *
  522. * Prepare to do this on the previous block if there is one
  523. *
  524. IF( I1.GT.1 ) THEN
  525. N1 = I1-1
  526. DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) )
  527. I1 = I1 - 1
  528. END DO
  529. IF( I1.GE.1 ) THEN
  530. SIGMA = -Z(4*N1-1)
  531. GO TO 145
  532. END IF
  533. END IF
  534. DO K = 1, N
  535. Z( 2*K-1 ) = Z( 4*K-3 )
  536. *
  537. * Only the block 1..N0 is unfinished. The rest of the e's
  538. * must be essentially zero, although sometimes other data
  539. * has been stored in them.
  540. *
  541. IF( K.LT.N0 ) THEN
  542. Z( 2*K ) = Z( 4*K-1 )
  543. ELSE
  544. Z( 2*K ) = 0
  545. END IF
  546. END DO
  547. RETURN
  548. *
  549. * end IWHILB
  550. *
  551. 150 CONTINUE
  552. *
  553. 160 CONTINUE
  554. *
  555. INFO = 3
  556. RETURN
  557. *
  558. * end IWHILA
  559. *
  560. 170 CONTINUE
  561. *
  562. * Move q's to the front.
  563. *
  564. DO 180 K = 2, N
  565. Z( K ) = Z( 4*K-3 )
  566. 180 CONTINUE
  567. *
  568. * Sort and compute sum of eigenvalues.
  569. *
  570. CALL SLASRT( 'D', N, Z, IINFO )
  571. *
  572. E = ZERO
  573. DO 190 K = N, 1, -1
  574. E = E + Z( K )
  575. 190 CONTINUE
  576. *
  577. * Store trace, sum(eigenvalues) and information on performance.
  578. *
  579. Z( 2*N+1 ) = TRACE
  580. Z( 2*N+2 ) = E
  581. Z( 2*N+3 ) = REAL( ITER )
  582. Z( 2*N+4 ) = REAL( NDIV ) / REAL( N**2 )
  583. Z( 2*N+5 ) = HUNDRD*NFAIL / REAL( ITER )
  584. RETURN
  585. *
  586. * End of SLASQ2
  587. *
  588. END