You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sla_gbrcond.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. *> \brief \b SLA_GBRCOND estimates the Skeel condition number for a general banded matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLA_GBRCOND + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gbrcond.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gbrcond.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gbrcond.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB, AFB, LDAFB,
  22. * IPIV, CMODE, C, INFO, WORK, IWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER N, LDAB, LDAFB, INFO, KL, KU, CMODE
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * ), IPIV( * )
  30. * REAL AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
  31. * $ C( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SLA_GBRCOND Estimates the Skeel condition number of op(A) * op2(C)
  41. *> where op2 is determined by CMODE as follows
  42. *> CMODE = 1 op2(C) = C
  43. *> CMODE = 0 op2(C) = I
  44. *> CMODE = -1 op2(C) = inv(C)
  45. *> The Skeel condition number cond(A) = norminf( |inv(A)||A| )
  46. *> is computed by computing scaling factors R such that
  47. *> diag(R)*A*op2(C) is row equilibrated and computing the standard
  48. *> infinity-norm condition number.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] TRANS
  55. *> \verbatim
  56. *> TRANS is CHARACTER*1
  57. *> Specifies the form of the system of equations:
  58. *> = 'N': A * X = B (No transpose)
  59. *> = 'T': A**T * X = B (Transpose)
  60. *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
  61. *> \endverbatim
  62. *>
  63. *> \param[in] N
  64. *> \verbatim
  65. *> N is INTEGER
  66. *> The number of linear equations, i.e., the order of the
  67. *> matrix A. N >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] KL
  71. *> \verbatim
  72. *> KL is INTEGER
  73. *> The number of subdiagonals within the band of A. KL >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] KU
  77. *> \verbatim
  78. *> KU is INTEGER
  79. *> The number of superdiagonals within the band of A. KU >= 0.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] AB
  83. *> \verbatim
  84. *> AB is REAL array, dimension (LDAB,N)
  85. *> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
  86. *> The j-th column of A is stored in the j-th column of the
  87. *> array AB as follows:
  88. *> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
  89. *> \endverbatim
  90. *>
  91. *> \param[in] LDAB
  92. *> \verbatim
  93. *> LDAB is INTEGER
  94. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] AFB
  98. *> \verbatim
  99. *> AFB is REAL array, dimension (LDAFB,N)
  100. *> Details of the LU factorization of the band matrix A, as
  101. *> computed by SGBTRF. U is stored as an upper triangular
  102. *> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
  103. *> and the multipliers used during the factorization are stored
  104. *> in rows KL+KU+2 to 2*KL+KU+1.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDAFB
  108. *> \verbatim
  109. *> LDAFB is INTEGER
  110. *> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] IPIV
  114. *> \verbatim
  115. *> IPIV is INTEGER array, dimension (N)
  116. *> The pivot indices from the factorization A = P*L*U
  117. *> as computed by SGBTRF; row i of the matrix was interchanged
  118. *> with row IPIV(i).
  119. *> \endverbatim
  120. *>
  121. *> \param[in] CMODE
  122. *> \verbatim
  123. *> CMODE is INTEGER
  124. *> Determines op2(C) in the formula op(A) * op2(C) as follows:
  125. *> CMODE = 1 op2(C) = C
  126. *> CMODE = 0 op2(C) = I
  127. *> CMODE = -1 op2(C) = inv(C)
  128. *> \endverbatim
  129. *>
  130. *> \param[in] C
  131. *> \verbatim
  132. *> C is REAL array, dimension (N)
  133. *> The vector C in the formula op(A) * op2(C).
  134. *> \endverbatim
  135. *>
  136. *> \param[out] INFO
  137. *> \verbatim
  138. *> INFO is INTEGER
  139. *> = 0: Successful exit.
  140. *> i > 0: The ith argument is invalid.
  141. *> \endverbatim
  142. *>
  143. *> \param[in] WORK
  144. *> \verbatim
  145. *> WORK is REAL array, dimension (5*N).
  146. *> Workspace.
  147. *> \endverbatim
  148. *>
  149. *> \param[in] IWORK
  150. *> \verbatim
  151. *> IWORK is INTEGER array, dimension (N).
  152. *> Workspace.
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \date September 2012
  164. *
  165. *> \ingroup realGBcomputational
  166. *
  167. * =====================================================================
  168. REAL FUNCTION SLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB, AFB, LDAFB,
  169. $ IPIV, CMODE, C, INFO, WORK, IWORK )
  170. *
  171. * -- LAPACK computational routine (version 3.4.2) --
  172. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  173. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  174. * September 2012
  175. *
  176. * .. Scalar Arguments ..
  177. CHARACTER TRANS
  178. INTEGER N, LDAB, LDAFB, INFO, KL, KU, CMODE
  179. * ..
  180. * .. Array Arguments ..
  181. INTEGER IWORK( * ), IPIV( * )
  182. REAL AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
  183. $ C( * )
  184. * ..
  185. *
  186. * =====================================================================
  187. *
  188. * .. Local Scalars ..
  189. LOGICAL NOTRANS
  190. INTEGER KASE, I, J, KD, KE
  191. REAL AINVNM, TMP
  192. * ..
  193. * .. Local Arrays ..
  194. INTEGER ISAVE( 3 )
  195. * ..
  196. * .. External Functions ..
  197. LOGICAL LSAME
  198. EXTERNAL LSAME
  199. * ..
  200. * .. External Subroutines ..
  201. EXTERNAL SLACN2, SGBTRS, XERBLA
  202. * ..
  203. * .. Intrinsic Functions ..
  204. INTRINSIC ABS, MAX
  205. * ..
  206. * .. Executable Statements ..
  207. *
  208. SLA_GBRCOND = 0.0
  209. *
  210. INFO = 0
  211. NOTRANS = LSAME( TRANS, 'N' )
  212. IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
  213. $ .AND. .NOT. LSAME(TRANS, 'C') ) THEN
  214. INFO = -1
  215. ELSE IF( N.LT.0 ) THEN
  216. INFO = -2
  217. ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
  218. INFO = -3
  219. ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  220. INFO = -4
  221. ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  222. INFO = -6
  223. ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  224. INFO = -8
  225. END IF
  226. IF( INFO.NE.0 ) THEN
  227. CALL XERBLA( 'SLA_GBRCOND', -INFO )
  228. RETURN
  229. END IF
  230. IF( N.EQ.0 ) THEN
  231. SLA_GBRCOND = 1.0
  232. RETURN
  233. END IF
  234. *
  235. * Compute the equilibration matrix R such that
  236. * inv(R)*A*C has unit 1-norm.
  237. *
  238. KD = KU + 1
  239. KE = KL + 1
  240. IF ( NOTRANS ) THEN
  241. DO I = 1, N
  242. TMP = 0.0
  243. IF ( CMODE .EQ. 1 ) THEN
  244. DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  245. TMP = TMP + ABS( AB( KD+I-J, J ) * C( J ) )
  246. END DO
  247. ELSE IF ( CMODE .EQ. 0 ) THEN
  248. DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  249. TMP = TMP + ABS( AB( KD+I-J, J ) )
  250. END DO
  251. ELSE
  252. DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  253. TMP = TMP + ABS( AB( KD+I-J, J ) / C( J ) )
  254. END DO
  255. END IF
  256. WORK( 2*N+I ) = TMP
  257. END DO
  258. ELSE
  259. DO I = 1, N
  260. TMP = 0.0
  261. IF ( CMODE .EQ. 1 ) THEN
  262. DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  263. TMP = TMP + ABS( AB( KE-I+J, I ) * C( J ) )
  264. END DO
  265. ELSE IF ( CMODE .EQ. 0 ) THEN
  266. DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  267. TMP = TMP + ABS( AB( KE-I+J, I ) )
  268. END DO
  269. ELSE
  270. DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  271. TMP = TMP + ABS( AB( KE-I+J, I ) / C( J ) )
  272. END DO
  273. END IF
  274. WORK( 2*N+I ) = TMP
  275. END DO
  276. END IF
  277. *
  278. * Estimate the norm of inv(op(A)).
  279. *
  280. AINVNM = 0.0
  281. KASE = 0
  282. 10 CONTINUE
  283. CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  284. IF( KASE.NE.0 ) THEN
  285. IF( KASE.EQ.2 ) THEN
  286. *
  287. * Multiply by R.
  288. *
  289. DO I = 1, N
  290. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  291. END DO
  292. IF ( NOTRANS ) THEN
  293. CALL SGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  294. $ IPIV, WORK, N, INFO )
  295. ELSE
  296. CALL SGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
  297. $ WORK, N, INFO )
  298. END IF
  299. *
  300. * Multiply by inv(C).
  301. *
  302. IF ( CMODE .EQ. 1 ) THEN
  303. DO I = 1, N
  304. WORK( I ) = WORK( I ) / C( I )
  305. END DO
  306. ELSE IF ( CMODE .EQ. -1 ) THEN
  307. DO I = 1, N
  308. WORK( I ) = WORK( I ) * C( I )
  309. END DO
  310. END IF
  311. ELSE
  312. *
  313. * Multiply by inv(C**T).
  314. *
  315. IF ( CMODE .EQ. 1 ) THEN
  316. DO I = 1, N
  317. WORK( I ) = WORK( I ) / C( I )
  318. END DO
  319. ELSE IF ( CMODE .EQ. -1 ) THEN
  320. DO I = 1, N
  321. WORK( I ) = WORK( I ) * C( I )
  322. END DO
  323. END IF
  324. IF ( NOTRANS ) THEN
  325. CALL SGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
  326. $ WORK, N, INFO )
  327. ELSE
  328. CALL SGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  329. $ IPIV, WORK, N, INFO )
  330. END IF
  331. *
  332. * Multiply by R.
  333. *
  334. DO I = 1, N
  335. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  336. END DO
  337. END IF
  338. GO TO 10
  339. END IF
  340. *
  341. * Compute the estimate of the reciprocal condition number.
  342. *
  343. IF( AINVNM .NE. 0.0 )
  344. $ SLA_GBRCOND = ( 1.0 / AINVNM )
  345. *
  346. RETURN
  347. *
  348. END