You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_syrfsx_extended.f 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. *> \brief \b DLA_SYRFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_SYRFSX_EXTENDED + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_syrfsx_extended.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  22. * AF, LDAF, IPIV, COLEQU, C, B, LDB,
  23. * Y, LDY, BERR_OUT, N_NORMS,
  24. * ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  25. * AYB, DY, Y_TAIL, RCOND, ITHRESH,
  26. * RTHRESH, DZ_UB, IGNORE_CWISE,
  27. * INFO )
  28. *
  29. * .. Scalar Arguments ..
  30. * INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  31. * $ N_NORMS, ITHRESH
  32. * CHARACTER UPLO
  33. * LOGICAL COLEQU, IGNORE_CWISE
  34. * DOUBLE PRECISION RTHRESH, DZ_UB
  35. * ..
  36. * .. Array Arguments ..
  37. * INTEGER IPIV( * )
  38. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  39. * $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  40. * DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  41. * $ ERR_BNDS_NORM( NRHS, * ),
  42. * $ ERR_BNDS_COMP( NRHS, * )
  43. * ..
  44. *
  45. *
  46. *> \par Purpose:
  47. * =============
  48. *>
  49. *> \verbatim
  50. *>
  51. *>
  52. *> DLA_SYRFSX_EXTENDED improves the computed solution to a system of
  53. *> linear equations by performing extra-precise iterative refinement
  54. *> and provides error bounds and backward error estimates for the solution.
  55. *> This subroutine is called by DSYRFSX to perform iterative refinement.
  56. *> In addition to normwise error bound, the code provides maximum
  57. *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
  58. *> and ERR_BNDS_COMP for details of the error bounds. Note that this
  59. *> subroutine is only resonsible for setting the second fields of
  60. *> ERR_BNDS_NORM and ERR_BNDS_COMP.
  61. *> \endverbatim
  62. *
  63. * Arguments:
  64. * ==========
  65. *
  66. *> \param[in] PREC_TYPE
  67. *> \verbatim
  68. *> PREC_TYPE is INTEGER
  69. *> Specifies the intermediate precision to be used in refinement.
  70. *> The value is defined by ILAPREC(P) where P is a CHARACTER and
  71. *> P = 'S': Single
  72. *> = 'D': Double
  73. *> = 'I': Indigenous
  74. *> = 'X', 'E': Extra
  75. *> \endverbatim
  76. *>
  77. *> \param[in] UPLO
  78. *> \verbatim
  79. *> UPLO is CHARACTER*1
  80. *> = 'U': Upper triangle of A is stored;
  81. *> = 'L': Lower triangle of A is stored.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of linear equations, i.e., the order of the
  88. *> matrix A. N >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] NRHS
  92. *> \verbatim
  93. *> NRHS is INTEGER
  94. *> The number of right-hand-sides, i.e., the number of columns of the
  95. *> matrix B.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] A
  99. *> \verbatim
  100. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  101. *> On entry, the N-by-N matrix A.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDA
  105. *> \verbatim
  106. *> LDA is INTEGER
  107. *> The leading dimension of the array A. LDA >= max(1,N).
  108. *> \endverbatim
  109. *>
  110. *> \param[in] AF
  111. *> \verbatim
  112. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  113. *> The block diagonal matrix D and the multipliers used to
  114. *> obtain the factor U or L as computed by DSYTRF.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDAF
  118. *> \verbatim
  119. *> LDAF is INTEGER
  120. *> The leading dimension of the array AF. LDAF >= max(1,N).
  121. *> \endverbatim
  122. *>
  123. *> \param[in] IPIV
  124. *> \verbatim
  125. *> IPIV is INTEGER array, dimension (N)
  126. *> Details of the interchanges and the block structure of D
  127. *> as determined by DSYTRF.
  128. *> \endverbatim
  129. *>
  130. *> \param[in] COLEQU
  131. *> \verbatim
  132. *> COLEQU is LOGICAL
  133. *> If .TRUE. then column equilibration was done to A before calling
  134. *> this routine. This is needed to compute the solution and error
  135. *> bounds correctly.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] C
  139. *> \verbatim
  140. *> C is DOUBLE PRECISION array, dimension (N)
  141. *> The column scale factors for A. If COLEQU = .FALSE., C
  142. *> is not accessed. If C is input, each element of C should be a power
  143. *> of the radix to ensure a reliable solution and error estimates.
  144. *> Scaling by powers of the radix does not cause rounding errors unless
  145. *> the result underflows or overflows. Rounding errors during scaling
  146. *> lead to refining with a matrix that is not equivalent to the
  147. *> input matrix, producing error estimates that may not be
  148. *> reliable.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] B
  152. *> \verbatim
  153. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  154. *> The right-hand-side matrix B.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LDB
  158. *> \verbatim
  159. *> LDB is INTEGER
  160. *> The leading dimension of the array B. LDB >= max(1,N).
  161. *> \endverbatim
  162. *>
  163. *> \param[in,out] Y
  164. *> \verbatim
  165. *> Y is DOUBLE PRECISION array, dimension
  166. *> (LDY,NRHS)
  167. *> On entry, the solution matrix X, as computed by DSYTRS.
  168. *> On exit, the improved solution matrix Y.
  169. *> \endverbatim
  170. *>
  171. *> \param[in] LDY
  172. *> \verbatim
  173. *> LDY is INTEGER
  174. *> The leading dimension of the array Y. LDY >= max(1,N).
  175. *> \endverbatim
  176. *>
  177. *> \param[out] BERR_OUT
  178. *> \verbatim
  179. *> BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  180. *> On exit, BERR_OUT(j) contains the componentwise relative backward
  181. *> error for right-hand-side j from the formula
  182. *> max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  183. *> where abs(Z) is the componentwise absolute value of the matrix
  184. *> or vector Z. This is computed by DLA_LIN_BERR.
  185. *> \endverbatim
  186. *>
  187. *> \param[in] N_NORMS
  188. *> \verbatim
  189. *> N_NORMS is INTEGER
  190. *> Determines which error bounds to return (see ERR_BNDS_NORM
  191. *> and ERR_BNDS_COMP).
  192. *> If N_NORMS >= 1 return normwise error bounds.
  193. *> If N_NORMS >= 2 return componentwise error bounds.
  194. *> \endverbatim
  195. *>
  196. *> \param[in,out] ERR_BNDS_NORM
  197. *> \verbatim
  198. *> ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
  199. *> (NRHS, N_ERR_BNDS)
  200. *> For each right-hand side, this array contains information about
  201. *> various error bounds and condition numbers corresponding to the
  202. *> normwise relative error, which is defined as follows:
  203. *>
  204. *> Normwise relative error in the ith solution vector:
  205. *> max_j (abs(XTRUE(j,i) - X(j,i)))
  206. *> ------------------------------
  207. *> max_j abs(X(j,i))
  208. *>
  209. *> The array is indexed by the type of error information as described
  210. *> below. There currently are up to three pieces of information
  211. *> returned.
  212. *>
  213. *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  214. *> right-hand side.
  215. *>
  216. *> The second index in ERR_BNDS_NORM(:,err) contains the following
  217. *> three fields:
  218. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  219. *> reciprocal condition number is less than the threshold
  220. *> sqrt(n) * slamch('Epsilon').
  221. *>
  222. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  223. *> almost certainly within a factor of 10 of the true error
  224. *> so long as the next entry is greater than the threshold
  225. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  226. *> be trusted if the previous boolean is true.
  227. *>
  228. *> err = 3 Reciprocal condition number: Estimated normwise
  229. *> reciprocal condition number. Compared with the threshold
  230. *> sqrt(n) * slamch('Epsilon') to determine if the error
  231. *> estimate is "guaranteed". These reciprocal condition
  232. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  233. *> appropriately scaled matrix Z.
  234. *> Let Z = S*A, where S scales each row by a power of the
  235. *> radix so all absolute row sums of Z are approximately 1.
  236. *>
  237. *> This subroutine is only responsible for setting the second field
  238. *> above.
  239. *> See Lapack Working Note 165 for further details and extra
  240. *> cautions.
  241. *> \endverbatim
  242. *>
  243. *> \param[in,out] ERR_BNDS_COMP
  244. *> \verbatim
  245. *> ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
  246. *> (NRHS, N_ERR_BNDS)
  247. *> For each right-hand side, this array contains information about
  248. *> various error bounds and condition numbers corresponding to the
  249. *> componentwise relative error, which is defined as follows:
  250. *>
  251. *> Componentwise relative error in the ith solution vector:
  252. *> abs(XTRUE(j,i) - X(j,i))
  253. *> max_j ----------------------
  254. *> abs(X(j,i))
  255. *>
  256. *> The array is indexed by the right-hand side i (on which the
  257. *> componentwise relative error depends), and the type of error
  258. *> information as described below. There currently are up to three
  259. *> pieces of information returned for each right-hand side. If
  260. *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  261. *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
  262. *> the first (:,N_ERR_BNDS) entries are returned.
  263. *>
  264. *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  265. *> right-hand side.
  266. *>
  267. *> The second index in ERR_BNDS_COMP(:,err) contains the following
  268. *> three fields:
  269. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  270. *> reciprocal condition number is less than the threshold
  271. *> sqrt(n) * slamch('Epsilon').
  272. *>
  273. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  274. *> almost certainly within a factor of 10 of the true error
  275. *> so long as the next entry is greater than the threshold
  276. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  277. *> be trusted if the previous boolean is true.
  278. *>
  279. *> err = 3 Reciprocal condition number: Estimated componentwise
  280. *> reciprocal condition number. Compared with the threshold
  281. *> sqrt(n) * slamch('Epsilon') to determine if the error
  282. *> estimate is "guaranteed". These reciprocal condition
  283. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  284. *> appropriately scaled matrix Z.
  285. *> Let Z = S*(A*diag(x)), where x is the solution for the
  286. *> current right-hand side and S scales each row of
  287. *> A*diag(x) by a power of the radix so all absolute row
  288. *> sums of Z are approximately 1.
  289. *>
  290. *> This subroutine is only responsible for setting the second field
  291. *> above.
  292. *> See Lapack Working Note 165 for further details and extra
  293. *> cautions.
  294. *> \endverbatim
  295. *>
  296. *> \param[in] RES
  297. *> \verbatim
  298. *> RES is DOUBLE PRECISION array, dimension (N)
  299. *> Workspace to hold the intermediate residual.
  300. *> \endverbatim
  301. *>
  302. *> \param[in] AYB
  303. *> \verbatim
  304. *> AYB is DOUBLE PRECISION array, dimension (N)
  305. *> Workspace. This can be the same workspace passed for Y_TAIL.
  306. *> \endverbatim
  307. *>
  308. *> \param[in] DY
  309. *> \verbatim
  310. *> DY is DOUBLE PRECISION array, dimension (N)
  311. *> Workspace to hold the intermediate solution.
  312. *> \endverbatim
  313. *>
  314. *> \param[in] Y_TAIL
  315. *> \verbatim
  316. *> Y_TAIL is DOUBLE PRECISION array, dimension (N)
  317. *> Workspace to hold the trailing bits of the intermediate solution.
  318. *> \endverbatim
  319. *>
  320. *> \param[in] RCOND
  321. *> \verbatim
  322. *> RCOND is DOUBLE PRECISION
  323. *> Reciprocal scaled condition number. This is an estimate of the
  324. *> reciprocal Skeel condition number of the matrix A after
  325. *> equilibration (if done). If this is less than the machine
  326. *> precision (in particular, if it is zero), the matrix is singular
  327. *> to working precision. Note that the error may still be small even
  328. *> if this number is very small and the matrix appears ill-
  329. *> conditioned.
  330. *> \endverbatim
  331. *>
  332. *> \param[in] ITHRESH
  333. *> \verbatim
  334. *> ITHRESH is INTEGER
  335. *> The maximum number of residual computations allowed for
  336. *> refinement. The default is 10. For 'aggressive' set to 100 to
  337. *> permit convergence using approximate factorizations or
  338. *> factorizations other than LU. If the factorization uses a
  339. *> technique other than Gaussian elimination, the guarantees in
  340. *> ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  341. *> \endverbatim
  342. *>
  343. *> \param[in] RTHRESH
  344. *> \verbatim
  345. *> RTHRESH is DOUBLE PRECISION
  346. *> Determines when to stop refinement if the error estimate stops
  347. *> decreasing. Refinement will stop when the next solution no longer
  348. *> satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  349. *> the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  350. *> default value is 0.5. For 'aggressive' set to 0.9 to permit
  351. *> convergence on extremely ill-conditioned matrices. See LAWN 165
  352. *> for more details.
  353. *> \endverbatim
  354. *>
  355. *> \param[in] DZ_UB
  356. *> \verbatim
  357. *> DZ_UB is DOUBLE PRECISION
  358. *> Determines when to start considering componentwise convergence.
  359. *> Componentwise convergence is only considered after each component
  360. *> of the solution Y is stable, which we definte as the relative
  361. *> change in each component being less than DZ_UB. The default value
  362. *> is 0.25, requiring the first bit to be stable. See LAWN 165 for
  363. *> more details.
  364. *> \endverbatim
  365. *>
  366. *> \param[in] IGNORE_CWISE
  367. *> \verbatim
  368. *> IGNORE_CWISE is LOGICAL
  369. *> If .TRUE. then ignore componentwise convergence. Default value
  370. *> is .FALSE..
  371. *> \endverbatim
  372. *>
  373. *> \param[out] INFO
  374. *> \verbatim
  375. *> INFO is INTEGER
  376. *> = 0: Successful exit.
  377. *> < 0: if INFO = -i, the ith argument to DLA_SYRFSX_EXTENDED had an illegal
  378. *> value
  379. *> \endverbatim
  380. *
  381. * Authors:
  382. * ========
  383. *
  384. *> \author Univ. of Tennessee
  385. *> \author Univ. of California Berkeley
  386. *> \author Univ. of Colorado Denver
  387. *> \author NAG Ltd.
  388. *
  389. *> \date September 2012
  390. *
  391. *> \ingroup doubleSYcomputational
  392. *
  393. * =====================================================================
  394. SUBROUTINE DLA_SYRFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA,
  395. $ AF, LDAF, IPIV, COLEQU, C, B, LDB,
  396. $ Y, LDY, BERR_OUT, N_NORMS,
  397. $ ERR_BNDS_NORM, ERR_BNDS_COMP, RES,
  398. $ AYB, DY, Y_TAIL, RCOND, ITHRESH,
  399. $ RTHRESH, DZ_UB, IGNORE_CWISE,
  400. $ INFO )
  401. *
  402. * -- LAPACK computational routine (version 3.4.2) --
  403. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  404. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  405. * September 2012
  406. *
  407. * .. Scalar Arguments ..
  408. INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  409. $ N_NORMS, ITHRESH
  410. CHARACTER UPLO
  411. LOGICAL COLEQU, IGNORE_CWISE
  412. DOUBLE PRECISION RTHRESH, DZ_UB
  413. * ..
  414. * .. Array Arguments ..
  415. INTEGER IPIV( * )
  416. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  417. $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  418. DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  419. $ ERR_BNDS_NORM( NRHS, * ),
  420. $ ERR_BNDS_COMP( NRHS, * )
  421. * ..
  422. *
  423. * =====================================================================
  424. *
  425. * .. Local Scalars ..
  426. INTEGER UPLO2, CNT, I, J, X_STATE, Z_STATE
  427. DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  428. $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  429. $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  430. $ EPS, HUGEVAL, INCR_THRESH
  431. LOGICAL INCR_PREC, UPPER
  432. * ..
  433. * .. Parameters ..
  434. INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  435. $ NOPROG_STATE, Y_PREC_STATE, BASE_RESIDUAL,
  436. $ EXTRA_RESIDUAL, EXTRA_Y
  437. PARAMETER ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  438. $ CONV_STATE = 2, NOPROG_STATE = 3 )
  439. PARAMETER ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  440. $ EXTRA_Y = 2 )
  441. INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  442. INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  443. INTEGER CMP_ERR_I, PIV_GROWTH_I
  444. PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  445. $ BERR_I = 3 )
  446. PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  447. PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  448. $ PIV_GROWTH_I = 9 )
  449. INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  450. $ LA_LINRX_CWISE_I
  451. PARAMETER ( LA_LINRX_ITREF_I = 1,
  452. $ LA_LINRX_ITHRESH_I = 2 )
  453. PARAMETER ( LA_LINRX_CWISE_I = 3 )
  454. INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  455. $ LA_LINRX_RCOND_I
  456. PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  457. PARAMETER ( LA_LINRX_RCOND_I = 3 )
  458. * ..
  459. * .. External Functions ..
  460. LOGICAL LSAME
  461. EXTERNAL ILAUPLO
  462. INTEGER ILAUPLO
  463. * ..
  464. * .. External Subroutines ..
  465. EXTERNAL DAXPY, DCOPY, DSYTRS, DSYMV, BLAS_DSYMV_X,
  466. $ BLAS_DSYMV2_X, DLA_SYAMV, DLA_WWADDW,
  467. $ DLA_LIN_BERR
  468. DOUBLE PRECISION DLAMCH
  469. * ..
  470. * .. Intrinsic Functions ..
  471. INTRINSIC ABS, MAX, MIN
  472. * ..
  473. * .. Executable Statements ..
  474. *
  475. INFO = 0
  476. UPPER = LSAME( UPLO, 'U' )
  477. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  478. INFO = -2
  479. ELSE IF( N.LT.0 ) THEN
  480. INFO = -3
  481. ELSE IF( NRHS.LT.0 ) THEN
  482. INFO = -4
  483. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  484. INFO = -6
  485. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  486. INFO = -8
  487. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  488. INFO = -13
  489. ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
  490. INFO = -15
  491. END IF
  492. IF( INFO.NE.0 ) THEN
  493. CALL XERBLA( 'DLA_SYRFSX_EXTENDED', -INFO )
  494. RETURN
  495. END IF
  496. EPS = DLAMCH( 'Epsilon' )
  497. HUGEVAL = DLAMCH( 'Overflow' )
  498. * Force HUGEVAL to Inf
  499. HUGEVAL = HUGEVAL * HUGEVAL
  500. * Using HUGEVAL may lead to spurious underflows.
  501. INCR_THRESH = DBLE( N )*EPS
  502. IF ( LSAME ( UPLO, 'L' ) ) THEN
  503. UPLO2 = ILAUPLO( 'L' )
  504. ELSE
  505. UPLO2 = ILAUPLO( 'U' )
  506. ENDIF
  507. DO J = 1, NRHS
  508. Y_PREC_STATE = EXTRA_RESIDUAL
  509. IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  510. DO I = 1, N
  511. Y_TAIL( I ) = 0.0D+0
  512. END DO
  513. END IF
  514. DXRAT = 0.0D+0
  515. DXRATMAX = 0.0D+0
  516. DZRAT = 0.0D+0
  517. DZRATMAX = 0.0D+0
  518. FINAL_DX_X = HUGEVAL
  519. FINAL_DZ_Z = HUGEVAL
  520. PREVNORMDX = HUGEVAL
  521. PREV_DZ_Z = HUGEVAL
  522. DZ_Z = HUGEVAL
  523. DX_X = HUGEVAL
  524. X_STATE = WORKING_STATE
  525. Z_STATE = UNSTABLE_STATE
  526. INCR_PREC = .FALSE.
  527. DO CNT = 1, ITHRESH
  528. *
  529. * Compute residual RES = B_s - op(A_s) * Y,
  530. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  531. *
  532. CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  533. IF (Y_PREC_STATE .EQ. BASE_RESIDUAL) THEN
  534. CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1,
  535. $ 1.0D+0, RES, 1 )
  536. ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
  537. CALL BLAS_DSYMV_X( UPLO2, N, -1.0D+0, A, LDA,
  538. $ Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
  539. ELSE
  540. CALL BLAS_DSYMV2_X(UPLO2, N, -1.0D+0, A, LDA,
  541. $ Y(1, J), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE)
  542. END IF
  543. ! XXX: RES is no longer needed.
  544. CALL DCOPY( N, RES, 1, DY, 1 )
  545. CALL DSYTRS( UPLO, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  546. *
  547. * Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  548. *
  549. NORMX = 0.0D+0
  550. NORMY = 0.0D+0
  551. NORMDX = 0.0D+0
  552. DZ_Z = 0.0D+0
  553. YMIN = HUGEVAL
  554. DO I = 1, N
  555. YK = ABS( Y( I, J ) )
  556. DYK = ABS( DY( I ) )
  557. IF ( YK .NE. 0.0D+0 ) THEN
  558. DZ_Z = MAX( DZ_Z, DYK / YK )
  559. ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  560. DZ_Z = HUGEVAL
  561. END IF
  562. YMIN = MIN( YMIN, YK )
  563. NORMY = MAX( NORMY, YK )
  564. IF ( COLEQU ) THEN
  565. NORMX = MAX( NORMX, YK * C( I ) )
  566. NORMDX = MAX( NORMDX, DYK * C( I ) )
  567. ELSE
  568. NORMX = NORMY
  569. NORMDX = MAX(NORMDX, DYK)
  570. END IF
  571. END DO
  572. IF ( NORMX .NE. 0.0D+0 ) THEN
  573. DX_X = NORMDX / NORMX
  574. ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  575. DX_X = 0.0D+0
  576. ELSE
  577. DX_X = HUGEVAL
  578. END IF
  579. DXRAT = NORMDX / PREVNORMDX
  580. DZRAT = DZ_Z / PREV_DZ_Z
  581. *
  582. * Check termination criteria.
  583. *
  584. IF ( YMIN*RCOND .LT. INCR_THRESH*NORMY
  585. $ .AND. Y_PREC_STATE .LT. EXTRA_Y )
  586. $ INCR_PREC = .TRUE.
  587. IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  588. $ X_STATE = WORKING_STATE
  589. IF ( X_STATE .EQ. WORKING_STATE ) THEN
  590. IF ( DX_X .LE. EPS ) THEN
  591. X_STATE = CONV_STATE
  592. ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  593. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  594. INCR_PREC = .TRUE.
  595. ELSE
  596. X_STATE = NOPROG_STATE
  597. END IF
  598. ELSE
  599. IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  600. END IF
  601. IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  602. END IF
  603. IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  604. $ Z_STATE = WORKING_STATE
  605. IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  606. $ Z_STATE = WORKING_STATE
  607. IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  608. IF ( DZ_Z .LE. EPS ) THEN
  609. Z_STATE = CONV_STATE
  610. ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  611. Z_STATE = UNSTABLE_STATE
  612. DZRATMAX = 0.0D+0
  613. FINAL_DZ_Z = HUGEVAL
  614. ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  615. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  616. INCR_PREC = .TRUE.
  617. ELSE
  618. Z_STATE = NOPROG_STATE
  619. END IF
  620. ELSE
  621. IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  622. END IF
  623. IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  624. END IF
  625. IF ( X_STATE.NE.WORKING_STATE.AND.
  626. $ ( IGNORE_CWISE.OR.Z_STATE.NE.WORKING_STATE ) )
  627. $ GOTO 666
  628. IF ( INCR_PREC ) THEN
  629. INCR_PREC = .FALSE.
  630. Y_PREC_STATE = Y_PREC_STATE + 1
  631. DO I = 1, N
  632. Y_TAIL( I ) = 0.0D+0
  633. END DO
  634. END IF
  635. PREVNORMDX = NORMDX
  636. PREV_DZ_Z = DZ_Z
  637. *
  638. * Update soluton.
  639. *
  640. IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  641. CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
  642. ELSE
  643. CALL DLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  644. END IF
  645. END DO
  646. * Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
  647. 666 CONTINUE
  648. *
  649. * Set final_* when cnt hits ithresh.
  650. *
  651. IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  652. IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  653. *
  654. * Compute error bounds.
  655. *
  656. IF ( N_NORMS .GE. 1 ) THEN
  657. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  658. $ FINAL_DX_X / (1 - DXRATMAX)
  659. END IF
  660. IF ( N_NORMS .GE. 2 ) THEN
  661. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  662. $ FINAL_DZ_Z / (1 - DZRATMAX)
  663. END IF
  664. *
  665. * Compute componentwise relative backward error from formula
  666. * max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  667. * where abs(Z) is the componentwise absolute value of the matrix
  668. * or vector Z.
  669. *
  670. * Compute residual RES = B_s - op(A_s) * Y,
  671. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  672. CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  673. CALL DSYMV( UPLO, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, RES,
  674. $ 1 )
  675. DO I = 1, N
  676. AYB( I ) = ABS( B( I, J ) )
  677. END DO
  678. *
  679. * Compute abs(op(A_s))*abs(Y) + abs(B_s).
  680. *
  681. CALL DLA_SYAMV( UPLO2, N, 1.0D+0,
  682. $ A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  683. CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  684. *
  685. * End of loop for each RHS.
  686. *
  687. END DO
  688. *
  689. RETURN
  690. END