You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_porcond.f 9.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. *> \brief \b DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_PORCOND + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porcond.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porcond.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porcond.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
  22. * CMODE, C, INFO, WORK,
  23. * IWORK )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER UPLO
  27. * INTEGER N, LDA, LDAF, INFO, CMODE
  28. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ),
  29. * $ C( * )
  30. * ..
  31. * .. Array Arguments ..
  32. * INTEGER IWORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> DLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C)
  42. *> where op2 is determined by CMODE as follows
  43. *> CMODE = 1 op2(C) = C
  44. *> CMODE = 0 op2(C) = I
  45. *> CMODE = -1 op2(C) = inv(C)
  46. *> The Skeel condition number cond(A) = norminf( |inv(A)||A| )
  47. *> is computed by computing scaling factors R such that
  48. *> diag(R)*A*op2(C) is row equilibrated and computing the standard
  49. *> infinity-norm condition number.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] UPLO
  56. *> \verbatim
  57. *> UPLO is CHARACTER*1
  58. *> = 'U': Upper triangle of A is stored;
  59. *> = 'L': Lower triangle of A is stored.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The number of linear equations, i.e., the order of the
  66. *> matrix A. N >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  72. *> On entry, the N-by-N matrix A.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] AF
  82. *> \verbatim
  83. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  84. *> The triangular factor U or L from the Cholesky factorization
  85. *> A = U**T*U or A = L*L**T, as computed by DPOTRF.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] LDAF
  89. *> \verbatim
  90. *> LDAF is INTEGER
  91. *> The leading dimension of the array AF. LDAF >= max(1,N).
  92. *> \endverbatim
  93. *>
  94. *> \param[in] CMODE
  95. *> \verbatim
  96. *> CMODE is INTEGER
  97. *> Determines op2(C) in the formula op(A) * op2(C) as follows:
  98. *> CMODE = 1 op2(C) = C
  99. *> CMODE = 0 op2(C) = I
  100. *> CMODE = -1 op2(C) = inv(C)
  101. *> \endverbatim
  102. *>
  103. *> \param[in] C
  104. *> \verbatim
  105. *> C is DOUBLE PRECISION array, dimension (N)
  106. *> The vector C in the formula op(A) * op2(C).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] INFO
  110. *> \verbatim
  111. *> INFO is INTEGER
  112. *> = 0: Successful exit.
  113. *> i > 0: The ith argument is invalid.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] WORK
  117. *> \verbatim
  118. *> WORK is DOUBLE PRECISION array, dimension (3*N).
  119. *> Workspace.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] IWORK
  123. *> \verbatim
  124. *> IWORK is INTEGER array, dimension (N).
  125. *> Workspace.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \date September 2012
  137. *
  138. *> \ingroup doublePOcomputational
  139. *
  140. * =====================================================================
  141. DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
  142. $ CMODE, C, INFO, WORK,
  143. $ IWORK )
  144. *
  145. * -- LAPACK computational routine (version 3.4.2) --
  146. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  147. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148. * September 2012
  149. *
  150. * .. Scalar Arguments ..
  151. CHARACTER UPLO
  152. INTEGER N, LDA, LDAF, INFO, CMODE
  153. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ),
  154. $ C( * )
  155. * ..
  156. * .. Array Arguments ..
  157. INTEGER IWORK( * )
  158. * ..
  159. *
  160. * =====================================================================
  161. *
  162. * .. Local Scalars ..
  163. INTEGER KASE, I, J
  164. DOUBLE PRECISION AINVNM, TMP
  165. LOGICAL UP
  166. * ..
  167. * .. Array Arguments ..
  168. INTEGER ISAVE( 3 )
  169. * ..
  170. * .. External Functions ..
  171. LOGICAL LSAME
  172. INTEGER IDAMAX
  173. EXTERNAL LSAME, IDAMAX
  174. * ..
  175. * .. External Subroutines ..
  176. EXTERNAL DLACN2, DPOTRS, XERBLA
  177. * ..
  178. * .. Intrinsic Functions ..
  179. INTRINSIC ABS, MAX
  180. * ..
  181. * .. Executable Statements ..
  182. *
  183. DLA_PORCOND = 0.0D+0
  184. *
  185. INFO = 0
  186. IF( N.LT.0 ) THEN
  187. INFO = -2
  188. END IF
  189. IF( INFO.NE.0 ) THEN
  190. CALL XERBLA( 'DLA_PORCOND', -INFO )
  191. RETURN
  192. END IF
  193. IF( N.EQ.0 ) THEN
  194. DLA_PORCOND = 1.0D+0
  195. RETURN
  196. END IF
  197. UP = .FALSE.
  198. IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
  199. *
  200. * Compute the equilibration matrix R such that
  201. * inv(R)*A*C has unit 1-norm.
  202. *
  203. IF ( UP ) THEN
  204. DO I = 1, N
  205. TMP = 0.0D+0
  206. IF ( CMODE .EQ. 1 ) THEN
  207. DO J = 1, I
  208. TMP = TMP + ABS( A( J, I ) * C( J ) )
  209. END DO
  210. DO J = I+1, N
  211. TMP = TMP + ABS( A( I, J ) * C( J ) )
  212. END DO
  213. ELSE IF ( CMODE .EQ. 0 ) THEN
  214. DO J = 1, I
  215. TMP = TMP + ABS( A( J, I ) )
  216. END DO
  217. DO J = I+1, N
  218. TMP = TMP + ABS( A( I, J ) )
  219. END DO
  220. ELSE
  221. DO J = 1, I
  222. TMP = TMP + ABS( A( J ,I ) / C( J ) )
  223. END DO
  224. DO J = I+1, N
  225. TMP = TMP + ABS( A( I, J ) / C( J ) )
  226. END DO
  227. END IF
  228. WORK( 2*N+I ) = TMP
  229. END DO
  230. ELSE
  231. DO I = 1, N
  232. TMP = 0.0D+0
  233. IF ( CMODE .EQ. 1 ) THEN
  234. DO J = 1, I
  235. TMP = TMP + ABS( A( I, J ) * C( J ) )
  236. END DO
  237. DO J = I+1, N
  238. TMP = TMP + ABS( A( J, I ) * C( J ) )
  239. END DO
  240. ELSE IF ( CMODE .EQ. 0 ) THEN
  241. DO J = 1, I
  242. TMP = TMP + ABS( A( I, J ) )
  243. END DO
  244. DO J = I+1, N
  245. TMP = TMP + ABS( A( J, I ) )
  246. END DO
  247. ELSE
  248. DO J = 1, I
  249. TMP = TMP + ABS( A( I, J ) / C( J ) )
  250. END DO
  251. DO J = I+1, N
  252. TMP = TMP + ABS( A( J, I ) / C( J ) )
  253. END DO
  254. END IF
  255. WORK( 2*N+I ) = TMP
  256. END DO
  257. ENDIF
  258. *
  259. * Estimate the norm of inv(op(A)).
  260. *
  261. AINVNM = 0.0D+0
  262. KASE = 0
  263. 10 CONTINUE
  264. CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  265. IF( KASE.NE.0 ) THEN
  266. IF( KASE.EQ.2 ) THEN
  267. *
  268. * Multiply by R.
  269. *
  270. DO I = 1, N
  271. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  272. END DO
  273. IF (UP) THEN
  274. CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  275. ELSE
  276. CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  277. ENDIF
  278. *
  279. * Multiply by inv(C).
  280. *
  281. IF ( CMODE .EQ. 1 ) THEN
  282. DO I = 1, N
  283. WORK( I ) = WORK( I ) / C( I )
  284. END DO
  285. ELSE IF ( CMODE .EQ. -1 ) THEN
  286. DO I = 1, N
  287. WORK( I ) = WORK( I ) * C( I )
  288. END DO
  289. END IF
  290. ELSE
  291. *
  292. * Multiply by inv(C**T).
  293. *
  294. IF ( CMODE .EQ. 1 ) THEN
  295. DO I = 1, N
  296. WORK( I ) = WORK( I ) / C( I )
  297. END DO
  298. ELSE IF ( CMODE .EQ. -1 ) THEN
  299. DO I = 1, N
  300. WORK( I ) = WORK( I ) * C( I )
  301. END DO
  302. END IF
  303. IF ( UP ) THEN
  304. CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
  305. ELSE
  306. CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
  307. ENDIF
  308. *
  309. * Multiply by R.
  310. *
  311. DO I = 1, N
  312. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  313. END DO
  314. END IF
  315. GO TO 10
  316. END IF
  317. *
  318. * Compute the estimate of the reciprocal condition number.
  319. *
  320. IF( AINVNM .NE. 0.0D+0 )
  321. $ DLA_PORCOND = ( 1.0D+0 / AINVNM )
  322. *
  323. RETURN
  324. *
  325. END