You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_gbamv.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. *> \brief \b DLA_GBAMV performs a matrix-vector operation to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_GBAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gbamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gbamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gbamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
  22. * INCX, BETA, Y, INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION ALPHA, BETA
  26. * INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION AB( LDAB, * ), X( * ), Y( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DLA_GBAMV performs one of the matrix-vector operations
  39. *>
  40. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  41. *> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
  42. *>
  43. *> where alpha and beta are scalars, x and y are vectors and A is an
  44. *> m by n matrix.
  45. *>
  46. *> This function is primarily used in calculating error bounds.
  47. *> To protect against underflow during evaluation, components in
  48. *> the resulting vector are perturbed away from zero by (N+1)
  49. *> times the underflow threshold. To prevent unnecessarily large
  50. *> errors for block-structure embedded in general matrices,
  51. *> "symbolically" zero components are not perturbed. A zero
  52. *> entry is considered "symbolic" if all multiplications involved
  53. *> in computing that entry have at least one zero multiplicand.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] TRANS
  60. *> \verbatim
  61. *> TRANS is INTEGER
  62. *> On entry, TRANS specifies the operation to be performed as
  63. *> follows:
  64. *>
  65. *> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
  66. *> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  67. *> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
  68. *>
  69. *> Unchanged on exit.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] M
  73. *> \verbatim
  74. *> M is INTEGER
  75. *> On entry, M specifies the number of rows of the matrix A.
  76. *> M must be at least zero.
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] N
  81. *> \verbatim
  82. *> N is INTEGER
  83. *> On entry, N specifies the number of columns of the matrix A.
  84. *> N must be at least zero.
  85. *> Unchanged on exit.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] KL
  89. *> \verbatim
  90. *> KL is INTEGER
  91. *> The number of subdiagonals within the band of A. KL >= 0.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] KU
  95. *> \verbatim
  96. *> KU is INTEGER
  97. *> The number of superdiagonals within the band of A. KU >= 0.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] ALPHA
  101. *> \verbatim
  102. *> ALPHA is DOUBLE PRECISION
  103. *> On entry, ALPHA specifies the scalar alpha.
  104. *> Unchanged on exit.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] AB
  108. *> \verbatim
  109. *> AB is DOUBLE PRECISION array of DIMENSION ( LDAB, n )
  110. *> Before entry, the leading m by n part of the array AB must
  111. *> contain the matrix of coefficients.
  112. *> Unchanged on exit.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDAB
  116. *> \verbatim
  117. *> LDAB is INTEGER
  118. *> On entry, LDA specifies the first dimension of AB as declared
  119. *> in the calling (sub) program. LDAB must be at least
  120. *> max( 1, m ).
  121. *> Unchanged on exit.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] X
  125. *> \verbatim
  126. *> X is DOUBLE PRECISION array, dimension
  127. *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  128. *> and at least
  129. *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  130. *> Before entry, the incremented array X must contain the
  131. *> vector x.
  132. *> Unchanged on exit.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] INCX
  136. *> \verbatim
  137. *> INCX is INTEGER
  138. *> On entry, INCX specifies the increment for the elements of
  139. *> X. INCX must not be zero.
  140. *> Unchanged on exit.
  141. *> \endverbatim
  142. *>
  143. *> \param[in] BETA
  144. *> \verbatim
  145. *> BETA is DOUBLE PRECISION
  146. *> On entry, BETA specifies the scalar beta. When BETA is
  147. *> supplied as zero then Y need not be set on input.
  148. *> Unchanged on exit.
  149. *> \endverbatim
  150. *>
  151. *> \param[in,out] Y
  152. *> \verbatim
  153. *> Y is DOUBLE PRECISION array, dimension
  154. *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  155. *> and at least
  156. *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  157. *> Before entry with BETA non-zero, the incremented array Y
  158. *> must contain the vector y. On exit, Y is overwritten by the
  159. *> updated vector y.
  160. *> \endverbatim
  161. *>
  162. *> \param[in] INCY
  163. *> \verbatim
  164. *> INCY is INTEGER
  165. *> On entry, INCY specifies the increment for the elements of
  166. *> Y. INCY must not be zero.
  167. *> Unchanged on exit.
  168. *>
  169. *> Level 2 Blas routine.
  170. *> \endverbatim
  171. *
  172. * Authors:
  173. * ========
  174. *
  175. *> \author Univ. of Tennessee
  176. *> \author Univ. of California Berkeley
  177. *> \author Univ. of Colorado Denver
  178. *> \author NAG Ltd.
  179. *
  180. *> \date September 2012
  181. *
  182. *> \ingroup doubleGBcomputational
  183. *
  184. * =====================================================================
  185. SUBROUTINE DLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
  186. $ INCX, BETA, Y, INCY )
  187. *
  188. * -- LAPACK computational routine (version 3.4.2) --
  189. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  190. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  191. * September 2012
  192. *
  193. * .. Scalar Arguments ..
  194. DOUBLE PRECISION ALPHA, BETA
  195. INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
  196. * ..
  197. * .. Array Arguments ..
  198. DOUBLE PRECISION AB( LDAB, * ), X( * ), Y( * )
  199. * ..
  200. *
  201. * =====================================================================
  202. *
  203. * .. Parameters ..
  204. DOUBLE PRECISION ONE, ZERO
  205. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  206. * ..
  207. * .. Local Scalars ..
  208. LOGICAL SYMB_ZERO
  209. DOUBLE PRECISION TEMP, SAFE1
  210. INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
  211. * ..
  212. * .. External Subroutines ..
  213. EXTERNAL XERBLA, DLAMCH
  214. DOUBLE PRECISION DLAMCH
  215. * ..
  216. * .. External Functions ..
  217. EXTERNAL ILATRANS
  218. INTEGER ILATRANS
  219. * ..
  220. * .. Intrinsic Functions ..
  221. INTRINSIC MAX, ABS, SIGN
  222. * ..
  223. * .. Executable Statements ..
  224. *
  225. * Test the input parameters.
  226. *
  227. INFO = 0
  228. IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  229. $ .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  230. $ .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  231. INFO = 1
  232. ELSE IF( M.LT.0 )THEN
  233. INFO = 2
  234. ELSE IF( N.LT.0 )THEN
  235. INFO = 3
  236. ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
  237. INFO = 4
  238. ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  239. INFO = 5
  240. ELSE IF( LDAB.LT.KL+KU+1 )THEN
  241. INFO = 6
  242. ELSE IF( INCX.EQ.0 )THEN
  243. INFO = 8
  244. ELSE IF( INCY.EQ.0 )THEN
  245. INFO = 11
  246. END IF
  247. IF( INFO.NE.0 )THEN
  248. CALL XERBLA( 'DLA_GBAMV ', INFO )
  249. RETURN
  250. END IF
  251. *
  252. * Quick return if possible.
  253. *
  254. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  255. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  256. $ RETURN
  257. *
  258. * Set LENX and LENY, the lengths of the vectors x and y, and set
  259. * up the start points in X and Y.
  260. *
  261. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  262. LENX = N
  263. LENY = M
  264. ELSE
  265. LENX = M
  266. LENY = N
  267. END IF
  268. IF( INCX.GT.0 )THEN
  269. KX = 1
  270. ELSE
  271. KX = 1 - ( LENX - 1 )*INCX
  272. END IF
  273. IF( INCY.GT.0 )THEN
  274. KY = 1
  275. ELSE
  276. KY = 1 - ( LENY - 1 )*INCY
  277. END IF
  278. *
  279. * Set SAFE1 essentially to be the underflow threshold times the
  280. * number of additions in each row.
  281. *
  282. SAFE1 = DLAMCH( 'Safe minimum' )
  283. SAFE1 = (N+1)*SAFE1
  284. *
  285. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  286. *
  287. * The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  288. * the inexact flag. Still doesn't help change the iteration order
  289. * to per-column.
  290. *
  291. KD = KU + 1
  292. KE = KL + 1
  293. IY = KY
  294. IF ( INCX.EQ.1 ) THEN
  295. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  296. DO I = 1, LENY
  297. IF ( BETA .EQ. ZERO ) THEN
  298. SYMB_ZERO = .TRUE.
  299. Y( IY ) = 0.0D+0
  300. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  301. SYMB_ZERO = .TRUE.
  302. ELSE
  303. SYMB_ZERO = .FALSE.
  304. Y( IY ) = BETA * ABS( Y( IY ) )
  305. END IF
  306. IF ( ALPHA .NE. ZERO ) THEN
  307. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  308. TEMP = ABS( AB( KD+I-J, J ) )
  309. SYMB_ZERO = SYMB_ZERO .AND.
  310. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  311. Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  312. END DO
  313. END IF
  314. IF ( .NOT.SYMB_ZERO )
  315. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  316. IY = IY + INCY
  317. END DO
  318. ELSE
  319. DO I = 1, LENY
  320. IF ( BETA .EQ. ZERO ) THEN
  321. SYMB_ZERO = .TRUE.
  322. Y( IY ) = 0.0D+0
  323. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  324. SYMB_ZERO = .TRUE.
  325. ELSE
  326. SYMB_ZERO = .FALSE.
  327. Y( IY ) = BETA * ABS( Y( IY ) )
  328. END IF
  329. IF ( ALPHA .NE. ZERO ) THEN
  330. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  331. TEMP = ABS( AB( KE-I+J, I ) )
  332. SYMB_ZERO = SYMB_ZERO .AND.
  333. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  334. Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  335. END DO
  336. END IF
  337. IF ( .NOT.SYMB_ZERO )
  338. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  339. IY = IY + INCY
  340. END DO
  341. END IF
  342. ELSE
  343. IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  344. DO I = 1, LENY
  345. IF ( BETA .EQ. ZERO ) THEN
  346. SYMB_ZERO = .TRUE.
  347. Y( IY ) = 0.0D+0
  348. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  349. SYMB_ZERO = .TRUE.
  350. ELSE
  351. SYMB_ZERO = .FALSE.
  352. Y( IY ) = BETA * ABS( Y( IY ) )
  353. END IF
  354. IF ( ALPHA .NE. ZERO ) THEN
  355. JX = KX
  356. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  357. TEMP = ABS( AB( KD+I-J, J ) )
  358. SYMB_ZERO = SYMB_ZERO .AND.
  359. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  360. Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  361. JX = JX + INCX
  362. END DO
  363. END IF
  364. IF ( .NOT.SYMB_ZERO )
  365. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  366. IY = IY + INCY
  367. END DO
  368. ELSE
  369. DO I = 1, LENY
  370. IF ( BETA .EQ. ZERO ) THEN
  371. SYMB_ZERO = .TRUE.
  372. Y( IY ) = 0.0D+0
  373. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  374. SYMB_ZERO = .TRUE.
  375. ELSE
  376. SYMB_ZERO = .FALSE.
  377. Y( IY ) = BETA * ABS( Y( IY ) )
  378. END IF
  379. IF ( ALPHA .NE. ZERO ) THEN
  380. JX = KX
  381. DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  382. TEMP = ABS( AB( KE-I+J, I ) )
  383. SYMB_ZERO = SYMB_ZERO .AND.
  384. $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  385. Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  386. JX = JX + INCX
  387. END DO
  388. END IF
  389. IF ( .NOT.SYMB_ZERO )
  390. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  391. IY = IY + INCY
  392. END DO
  393. END IF
  394. END IF
  395. *
  396. RETURN
  397. *
  398. * End of DLA_GBAMV
  399. *
  400. END