You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cunmbr.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. *> \brief \b CUNMBR
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNMBR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmbr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmbr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmbr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
  22. * LDC, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS, VECT
  26. * INTEGER INFO, K, LDA, LDC, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> If VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C
  40. *> with
  41. *> SIDE = 'L' SIDE = 'R'
  42. *> TRANS = 'N': Q * C C * Q
  43. *> TRANS = 'C': Q**H * C C * Q**H
  44. *>
  45. *> If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C
  46. *> with
  47. *> SIDE = 'L' SIDE = 'R'
  48. *> TRANS = 'N': P * C C * P
  49. *> TRANS = 'C': P**H * C C * P**H
  50. *>
  51. *> Here Q and P**H are the unitary matrices determined by CGEBRD when
  52. *> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
  53. *> and P**H are defined as products of elementary reflectors H(i) and
  54. *> G(i) respectively.
  55. *>
  56. *> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
  57. *> order of the unitary matrix Q or P**H that is applied.
  58. *>
  59. *> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
  60. *> if nq >= k, Q = H(1) H(2) . . . H(k);
  61. *> if nq < k, Q = H(1) H(2) . . . H(nq-1).
  62. *>
  63. *> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
  64. *> if k < nq, P = G(1) G(2) . . . G(k);
  65. *> if k >= nq, P = G(1) G(2) . . . G(nq-1).
  66. *> \endverbatim
  67. *
  68. * Arguments:
  69. * ==========
  70. *
  71. *> \param[in] VECT
  72. *> \verbatim
  73. *> VECT is CHARACTER*1
  74. *> = 'Q': apply Q or Q**H;
  75. *> = 'P': apply P or P**H.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] SIDE
  79. *> \verbatim
  80. *> SIDE is CHARACTER*1
  81. *> = 'L': apply Q, Q**H, P or P**H from the Left;
  82. *> = 'R': apply Q, Q**H, P or P**H from the Right.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] TRANS
  86. *> \verbatim
  87. *> TRANS is CHARACTER*1
  88. *> = 'N': No transpose, apply Q or P;
  89. *> = 'C': Conjugate transpose, apply Q**H or P**H.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] M
  93. *> \verbatim
  94. *> M is INTEGER
  95. *> The number of rows of the matrix C. M >= 0.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] N
  99. *> \verbatim
  100. *> N is INTEGER
  101. *> The number of columns of the matrix C. N >= 0.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] K
  105. *> \verbatim
  106. *> K is INTEGER
  107. *> If VECT = 'Q', the number of columns in the original
  108. *> matrix reduced by CGEBRD.
  109. *> If VECT = 'P', the number of rows in the original
  110. *> matrix reduced by CGEBRD.
  111. *> K >= 0.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] A
  115. *> \verbatim
  116. *> A is COMPLEX array, dimension
  117. *> (LDA,min(nq,K)) if VECT = 'Q'
  118. *> (LDA,nq) if VECT = 'P'
  119. *> The vectors which define the elementary reflectors H(i) and
  120. *> G(i), whose products determine the matrices Q and P, as
  121. *> returned by CGEBRD.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDA
  125. *> \verbatim
  126. *> LDA is INTEGER
  127. *> The leading dimension of the array A.
  128. *> If VECT = 'Q', LDA >= max(1,nq);
  129. *> if VECT = 'P', LDA >= max(1,min(nq,K)).
  130. *> \endverbatim
  131. *>
  132. *> \param[in] TAU
  133. *> \verbatim
  134. *> TAU is COMPLEX array, dimension (min(nq,K))
  135. *> TAU(i) must contain the scalar factor of the elementary
  136. *> reflector H(i) or G(i) which determines Q or P, as returned
  137. *> by CGEBRD in the array argument TAUQ or TAUP.
  138. *> \endverbatim
  139. *>
  140. *> \param[in,out] C
  141. *> \verbatim
  142. *> C is COMPLEX array, dimension (LDC,N)
  143. *> On entry, the M-by-N matrix C.
  144. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
  145. *> or P*C or P**H*C or C*P or C*P**H.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDC
  149. *> \verbatim
  150. *> LDC is INTEGER
  151. *> The leading dimension of the array C. LDC >= max(1,M).
  152. *> \endverbatim
  153. *>
  154. *> \param[out] WORK
  155. *> \verbatim
  156. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  157. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  158. *> \endverbatim
  159. *>
  160. *> \param[in] LWORK
  161. *> \verbatim
  162. *> LWORK is INTEGER
  163. *> The dimension of the array WORK.
  164. *> If SIDE = 'L', LWORK >= max(1,N);
  165. *> if SIDE = 'R', LWORK >= max(1,M);
  166. *> if N = 0 or M = 0, LWORK >= 1.
  167. *> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
  168. *> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
  169. *> optimal blocksize. (NB = 0 if M = 0 or N = 0.)
  170. *>
  171. *> If LWORK = -1, then a workspace query is assumed; the routine
  172. *> only calculates the optimal size of the WORK array, returns
  173. *> this value as the first entry of the WORK array, and no error
  174. *> message related to LWORK is issued by XERBLA.
  175. *> \endverbatim
  176. *>
  177. *> \param[out] INFO
  178. *> \verbatim
  179. *> INFO is INTEGER
  180. *> = 0: successful exit
  181. *> < 0: if INFO = -i, the i-th argument had an illegal value
  182. *> \endverbatim
  183. *
  184. * Authors:
  185. * ========
  186. *
  187. *> \author Univ. of Tennessee
  188. *> \author Univ. of California Berkeley
  189. *> \author Univ. of Colorado Denver
  190. *> \author NAG Ltd.
  191. *
  192. *> \date November 2011
  193. *
  194. *> \ingroup complexOTHERcomputational
  195. *
  196. * =====================================================================
  197. SUBROUTINE CUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
  198. $ LDC, WORK, LWORK, INFO )
  199. *
  200. * -- LAPACK computational routine (version 3.4.0) --
  201. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  202. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  203. * November 2011
  204. *
  205. * .. Scalar Arguments ..
  206. CHARACTER SIDE, TRANS, VECT
  207. INTEGER INFO, K, LDA, LDC, LWORK, M, N
  208. * ..
  209. * .. Array Arguments ..
  210. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  211. $ WORK( * )
  212. * ..
  213. *
  214. * =====================================================================
  215. *
  216. * .. Local Scalars ..
  217. LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
  218. CHARACTER TRANST
  219. INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
  220. * ..
  221. * .. External Functions ..
  222. LOGICAL LSAME
  223. INTEGER ILAENV
  224. EXTERNAL ILAENV, LSAME
  225. * ..
  226. * .. External Subroutines ..
  227. EXTERNAL CUNMLQ, CUNMQR, XERBLA
  228. * ..
  229. * .. Intrinsic Functions ..
  230. INTRINSIC MAX, MIN
  231. * ..
  232. * .. Executable Statements ..
  233. *
  234. * Test the input arguments
  235. *
  236. INFO = 0
  237. APPLYQ = LSAME( VECT, 'Q' )
  238. LEFT = LSAME( SIDE, 'L' )
  239. NOTRAN = LSAME( TRANS, 'N' )
  240. LQUERY = ( LWORK.EQ.-1 )
  241. *
  242. * NQ is the order of Q or P and NW is the minimum dimension of WORK
  243. *
  244. IF( LEFT ) THEN
  245. NQ = M
  246. NW = N
  247. ELSE
  248. NQ = N
  249. NW = M
  250. END IF
  251. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  252. NW = 0
  253. END IF
  254. IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
  255. INFO = -1
  256. ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  257. INFO = -2
  258. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  259. INFO = -3
  260. ELSE IF( M.LT.0 ) THEN
  261. INFO = -4
  262. ELSE IF( N.LT.0 ) THEN
  263. INFO = -5
  264. ELSE IF( K.LT.0 ) THEN
  265. INFO = -6
  266. ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
  267. $ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
  268. $ THEN
  269. INFO = -8
  270. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  271. INFO = -11
  272. ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
  273. INFO = -13
  274. END IF
  275. *
  276. IF( INFO.EQ.0 ) THEN
  277. IF( NW.GT.0 ) THEN
  278. IF( APPLYQ ) THEN
  279. IF( LEFT ) THEN
  280. NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M-1, N, M-1,
  281. $ -1 )
  282. ELSE
  283. NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M, N-1, N-1,
  284. $ -1 )
  285. END IF
  286. ELSE
  287. IF( LEFT ) THEN
  288. NB = ILAENV( 1, 'CUNMLQ', SIDE // TRANS, M-1, N, M-1,
  289. $ -1 )
  290. ELSE
  291. NB = ILAENV( 1, 'CUNMLQ', SIDE // TRANS, M, N-1, N-1,
  292. $ -1 )
  293. END IF
  294. END IF
  295. LWKOPT = MAX( 1, NW*NB )
  296. ELSE
  297. LWKOPT = 1
  298. END IF
  299. WORK( 1 ) = LWKOPT
  300. END IF
  301. *
  302. IF( INFO.NE.0 ) THEN
  303. CALL XERBLA( 'CUNMBR', -INFO )
  304. RETURN
  305. ELSE IF( LQUERY ) THEN
  306. RETURN
  307. END IF
  308. *
  309. * Quick return if possible
  310. *
  311. IF( M.EQ.0 .OR. N.EQ.0 )
  312. $ RETURN
  313. *
  314. IF( APPLYQ ) THEN
  315. *
  316. * Apply Q
  317. *
  318. IF( NQ.GE.K ) THEN
  319. *
  320. * Q was determined by a call to CGEBRD with nq >= k
  321. *
  322. CALL CUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  323. $ WORK, LWORK, IINFO )
  324. ELSE IF( NQ.GT.1 ) THEN
  325. *
  326. * Q was determined by a call to CGEBRD with nq < k
  327. *
  328. IF( LEFT ) THEN
  329. MI = M - 1
  330. NI = N
  331. I1 = 2
  332. I2 = 1
  333. ELSE
  334. MI = M
  335. NI = N - 1
  336. I1 = 1
  337. I2 = 2
  338. END IF
  339. CALL CUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
  340. $ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
  341. END IF
  342. ELSE
  343. *
  344. * Apply P
  345. *
  346. IF( NOTRAN ) THEN
  347. TRANST = 'C'
  348. ELSE
  349. TRANST = 'N'
  350. END IF
  351. IF( NQ.GT.K ) THEN
  352. *
  353. * P was determined by a call to CGEBRD with nq > k
  354. *
  355. CALL CUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
  356. $ WORK, LWORK, IINFO )
  357. ELSE IF( NQ.GT.1 ) THEN
  358. *
  359. * P was determined by a call to CGEBRD with nq <= k
  360. *
  361. IF( LEFT ) THEN
  362. MI = M - 1
  363. NI = N
  364. I1 = 2
  365. I2 = 1
  366. ELSE
  367. MI = M
  368. NI = N - 1
  369. I1 = 1
  370. I2 = 2
  371. END IF
  372. CALL CUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
  373. $ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
  374. END IF
  375. END IF
  376. WORK( 1 ) = LWKOPT
  377. RETURN
  378. *
  379. * End of CUNMBR
  380. *
  381. END