You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctzrqf.f 7.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. *> \brief \b CTZRQF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTZRQF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctzrqf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctzrqf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctzrqf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX A( LDA, * ), TAU( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> This routine is deprecated and has been replaced by routine CTZRZF.
  37. *>
  38. *> CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
  39. *> to upper triangular form by means of unitary transformations.
  40. *>
  41. *> The upper trapezoidal matrix A is factored as
  42. *>
  43. *> A = ( R 0 ) * Z,
  44. *>
  45. *> where Z is an N-by-N unitary matrix and R is an M-by-M upper
  46. *> triangular matrix.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] M
  53. *> \verbatim
  54. *> M is INTEGER
  55. *> The number of rows of the matrix A. M >= 0.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The number of columns of the matrix A. N >= M.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is COMPLEX array, dimension (LDA,N)
  67. *> On entry, the leading M-by-N upper trapezoidal part of the
  68. *> array A must contain the matrix to be factorized.
  69. *> On exit, the leading M-by-M upper triangular part of A
  70. *> contains the upper triangular matrix R, and elements M+1 to
  71. *> N of the first M rows of A, with the array TAU, represent the
  72. *> unitary matrix Z as a product of M elementary reflectors.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,M).
  79. *> \endverbatim
  80. *>
  81. *> \param[out] TAU
  82. *> \verbatim
  83. *> TAU is COMPLEX array, dimension (M)
  84. *> The scalar factors of the elementary reflectors.
  85. *> \endverbatim
  86. *>
  87. *> \param[out] INFO
  88. *> \verbatim
  89. *> INFO is INTEGER
  90. *> = 0: successful exit
  91. *> < 0: if INFO = -i, the i-th argument had an illegal value
  92. *> \endverbatim
  93. *
  94. * Authors:
  95. * ========
  96. *
  97. *> \author Univ. of Tennessee
  98. *> \author Univ. of California Berkeley
  99. *> \author Univ. of Colorado Denver
  100. *> \author NAG Ltd.
  101. *
  102. *> \date November 2011
  103. *
  104. *> \ingroup complexOTHERcomputational
  105. *
  106. *> \par Further Details:
  107. * =====================
  108. *>
  109. *> \verbatim
  110. *>
  111. *> The factorization is obtained by Householder's method. The kth
  112. *> transformation matrix, Z( k ), whose conjugate transpose is used to
  113. *> introduce zeros into the (m - k + 1)th row of A, is given in the form
  114. *>
  115. *> Z( k ) = ( I 0 ),
  116. *> ( 0 T( k ) )
  117. *>
  118. *> where
  119. *>
  120. *> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ),
  121. *> ( 0 )
  122. *> ( z( k ) )
  123. *>
  124. *> tau is a scalar and z( k ) is an ( n - m ) element vector.
  125. *> tau and z( k ) are chosen to annihilate the elements of the kth row
  126. *> of X.
  127. *>
  128. *> The scalar tau is returned in the kth element of TAU and the vector
  129. *> u( k ) in the kth row of A, such that the elements of z( k ) are
  130. *> in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
  131. *> the upper triangular part of A.
  132. *>
  133. *> Z is given by
  134. *>
  135. *> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
  136. *> \endverbatim
  137. *>
  138. * =====================================================================
  139. SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO )
  140. *
  141. * -- LAPACK computational routine (version 3.4.0) --
  142. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  143. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144. * November 2011
  145. *
  146. * .. Scalar Arguments ..
  147. INTEGER INFO, LDA, M, N
  148. * ..
  149. * .. Array Arguments ..
  150. COMPLEX A( LDA, * ), TAU( * )
  151. * ..
  152. *
  153. * =====================================================================
  154. *
  155. * .. Parameters ..
  156. COMPLEX CONE, CZERO
  157. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ),
  158. $ CZERO = ( 0.0E+0, 0.0E+0 ) )
  159. * ..
  160. * .. Local Scalars ..
  161. INTEGER I, K, M1
  162. COMPLEX ALPHA
  163. * ..
  164. * .. Intrinsic Functions ..
  165. INTRINSIC CONJG, MAX, MIN
  166. * ..
  167. * .. External Subroutines ..
  168. EXTERNAL CAXPY, CCOPY, CGEMV, CGERC, CLACGV, CLARFG,
  169. $ XERBLA
  170. * ..
  171. * .. Executable Statements ..
  172. *
  173. * Test the input parameters.
  174. *
  175. INFO = 0
  176. IF( M.LT.0 ) THEN
  177. INFO = -1
  178. ELSE IF( N.LT.M ) THEN
  179. INFO = -2
  180. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  181. INFO = -4
  182. END IF
  183. IF( INFO.NE.0 ) THEN
  184. CALL XERBLA( 'CTZRQF', -INFO )
  185. RETURN
  186. END IF
  187. *
  188. * Perform the factorization.
  189. *
  190. IF( M.EQ.0 )
  191. $ RETURN
  192. IF( M.EQ.N ) THEN
  193. DO 10 I = 1, N
  194. TAU( I ) = CZERO
  195. 10 CONTINUE
  196. ELSE
  197. M1 = MIN( M+1, N )
  198. DO 20 K = M, 1, -1
  199. *
  200. * Use a Householder reflection to zero the kth row of A.
  201. * First set up the reflection.
  202. *
  203. A( K, K ) = CONJG( A( K, K ) )
  204. CALL CLACGV( N-M, A( K, M1 ), LDA )
  205. ALPHA = A( K, K )
  206. CALL CLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
  207. A( K, K ) = ALPHA
  208. TAU( K ) = CONJG( TAU( K ) )
  209. *
  210. IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
  211. *
  212. * We now perform the operation A := A*P( k )**H.
  213. *
  214. * Use the first ( k - 1 ) elements of TAU to store a( k ),
  215. * where a( k ) consists of the first ( k - 1 ) elements of
  216. * the kth column of A. Also let B denote the first
  217. * ( k - 1 ) rows of the last ( n - m ) columns of A.
  218. *
  219. CALL CCOPY( K-1, A( 1, K ), 1, TAU, 1 )
  220. *
  221. * Form w = a( k ) + B*z( k ) in TAU.
  222. *
  223. CALL CGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
  224. $ LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
  225. *
  226. * Now form a( k ) := a( k ) - conjg(tau)*w
  227. * and B := B - conjg(tau)*w*z( k )**H.
  228. *
  229. CALL CAXPY( K-1, -CONJG( TAU( K ) ), TAU, 1, A( 1, K ),
  230. $ 1 )
  231. CALL CGERC( K-1, N-M, -CONJG( TAU( K ) ), TAU, 1,
  232. $ A( K, M1 ), LDA, A( 1, M1 ), LDA )
  233. END IF
  234. 20 CONTINUE
  235. END IF
  236. *
  237. RETURN
  238. *
  239. * End of CTZRQF
  240. *
  241. END