You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

macros_msa.h 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. /*******************************************************************************
  2. Copyright (c) 2016, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *******************************************************************************/
  27. #ifndef __MACROS_MSA_H__
  28. #define __MACROS_MSA_H__
  29. #include <stdint.h>
  30. #include <msa.h>
  31. #define ENABLE_PREFETCH
  32. #ifdef ENABLE_PREFETCH
  33. inline static void prefetch_load_lf(unsigned char *src)
  34. {
  35. __asm__ __volatile__("pref 0, 0(%[src]) \n\t" : : [src] "r" (src));
  36. }
  37. #define PREFETCH(PTR) prefetch_load_lf((unsigned char *)(PTR));
  38. #define STRNG(X) #X
  39. #define PREF_OFFSET(src_ptr, offset) \
  40. __asm__ __volatile__("pref 0, " STRNG(offset) "(%[src]) \n\t" : : [src] "r" (src_ptr));
  41. #else
  42. #define PREFETCH(PTR)
  43. #define PREF_OFFSET(src_ptr, offset)
  44. #endif
  45. #define LD_W(RTYPE, psrc) *((RTYPE *)(psrc))
  46. #define LD_SP(...) LD_W(v4f32, __VA_ARGS__)
  47. #define LD_D(RTYPE, psrc) *((RTYPE *)(psrc))
  48. #define LD_DP(...) LD_D(v2f64, __VA_ARGS__)
  49. #define ST_W(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
  50. #define ST_SP(...) ST_W(v4f32, __VA_ARGS__)
  51. #define ST_D(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
  52. #define ST_DP(...) ST_D(v2f64, __VA_ARGS__)
  53. #define COPY_FLOAT_TO_VECTOR(a) ( { \
  54. v4f32 out; \
  55. out = __msa_cast_to_vector_float(a); \
  56. out = (v4f32) __msa_splati_w((v4i32) out, 0); \
  57. out; \
  58. } )
  59. #define COPY_DOUBLE_TO_VECTOR(a) ( { \
  60. v2f64 out; \
  61. out = __msa_cast_to_vector_double(a); \
  62. out = (v2f64) __msa_splati_d((v2i64) out, 0); \
  63. out; \
  64. } )
  65. /* Description : Load 2 variables with stride
  66. Arguments : Inputs - psrc, stride
  67. Outputs - out0, out1
  68. */
  69. #define LD_GP2_INC(psrc, stride, out0, out1) \
  70. { \
  71. out0 = *(psrc); \
  72. (psrc) += stride; \
  73. out1 = *(psrc); \
  74. (psrc) += stride; \
  75. }
  76. #define LD_GP3_INC(psrc, stride, out0, \
  77. out1, out2) \
  78. { \
  79. LD_GP2_INC(psrc, stride, out0, out1); \
  80. out2 = *(psrc); \
  81. (psrc) += stride; \
  82. }
  83. #define LD_GP4_INC(psrc, stride, out0, \
  84. out1, out2, out3) \
  85. { \
  86. LD_GP2_INC(psrc, stride, out0, out1); \
  87. LD_GP2_INC(psrc, stride, out2, out3); \
  88. }
  89. #define LD_GP5_INC(psrc, stride, out0, \
  90. out1, out2, out3, out4) \
  91. { \
  92. LD_GP2_INC(psrc, stride, out0, out1); \
  93. LD_GP2_INC(psrc, stride, out2, out3); \
  94. out4 = *(psrc); \
  95. (psrc) += stride; \
  96. }
  97. #define LD_GP6_INC(psrc, stride, out0, \
  98. out1, out2, out3, \
  99. out4, out5) \
  100. { \
  101. LD_GP2_INC(psrc, stride, out0, out1); \
  102. LD_GP2_INC(psrc, stride, out2, out3); \
  103. LD_GP2_INC(psrc, stride, out4, out5); \
  104. }
  105. #define LD_GP7_INC(psrc, stride, out0, \
  106. out1, out2, out3, \
  107. out4, out5, out6) \
  108. { \
  109. LD_GP2_INC(psrc, stride, out0, out1); \
  110. LD_GP2_INC(psrc, stride, out2, out3); \
  111. LD_GP2_INC(psrc, stride, out4, out5); \
  112. out6 = *(psrc); \
  113. (psrc) += stride; \
  114. }
  115. #define LD_GP8_INC(psrc, stride, out0, out1, out2, \
  116. out3, out4, out5, out6, out7) \
  117. { \
  118. LD_GP4_INC(psrc, stride, out0, out1, out2, out3); \
  119. LD_GP4_INC(psrc, stride, out4, out5, out6, out7); \
  120. }
  121. /* Description : Load 2 vectors of single precision floating point elements with stride
  122. Arguments : Inputs - psrc, stride
  123. Outputs - out0, out1
  124. Return Type - single precision floating point
  125. */
  126. #define LD_SP2(psrc, stride, out0, out1) \
  127. { \
  128. out0 = LD_SP((psrc)); \
  129. out1 = LD_SP((psrc) + stride); \
  130. }
  131. #define LD_SP4(psrc, stride, out0, out1, out2, out3) \
  132. { \
  133. LD_SP2(psrc, stride, out0, out1) \
  134. LD_SP2(psrc + 2 * stride, stride, out2, out3) \
  135. }
  136. #define LD_SP2_INC(psrc, stride, out0, out1) \
  137. { \
  138. out0 = LD_SP((psrc)); \
  139. (psrc) += stride; \
  140. out1 = LD_SP((psrc)); \
  141. (psrc) += stride; \
  142. }
  143. #define LD_SP3_INC(psrc, stride, out0, \
  144. out1, out2) \
  145. { \
  146. LD_SP2_INC(psrc, stride, out0, out1); \
  147. out2 = LD_SP((psrc)); \
  148. (psrc) += stride; \
  149. }
  150. #define LD_SP4_INC(psrc, stride, out0, \
  151. out1, out2, out3) \
  152. { \
  153. LD_SP2_INC(psrc, stride, out0, out1); \
  154. LD_SP2_INC(psrc, stride, out2, out3); \
  155. }
  156. #define LD_SP5_INC(psrc, stride, out0, \
  157. out1, out2, out3, out4) \
  158. { \
  159. LD_SP2_INC(psrc, stride, out0, out1); \
  160. LD_SP2_INC(psrc, stride, out2, out3); \
  161. out4 = LD_SP((psrc)); \
  162. (psrc) += stride; \
  163. }
  164. #define LD_SP6_INC(psrc, stride, out0, \
  165. out1, out2, out3, \
  166. out4, out5) \
  167. { \
  168. LD_SP2_INC(psrc, stride, out0, out1); \
  169. LD_SP2_INC(psrc, stride, out2, out3); \
  170. LD_SP2_INC(psrc, stride, out4, out5); \
  171. }
  172. #define LD_SP7_INC(psrc, stride, out0, \
  173. out1, out2, out3, \
  174. out4, out5, out6) \
  175. { \
  176. LD_SP2_INC(psrc, stride, out0, out1); \
  177. LD_SP2_INC(psrc, stride, out2, out3); \
  178. LD_SP2_INC(psrc, stride, out4, out5); \
  179. out6 = LD_SP((psrc)); \
  180. (psrc) += stride; \
  181. }
  182. #define LD_SP8_INC(psrc, stride, out0, out1, out2, \
  183. out3, out4, out5, out6, out7) \
  184. { \
  185. LD_SP4_INC(psrc, stride, out0, out1, out2, out3); \
  186. LD_SP4_INC(psrc, stride, out4, out5, out6, out7); \
  187. }
  188. #define LD_SP16_INC(psrc, stride, out0, out1, out2, \
  189. out3, out4, out5, out6, out7, out8, \
  190. out9, out10, out11, out12, out13, \
  191. out14, out15) \
  192. { \
  193. LD_SP8_INC(psrc, stride, out0, out1, out2, \
  194. out3, out4, out5, out6, out7); \
  195. LD_SP8_INC(psrc, stride, out8, out9, out10, \
  196. out11, out12, out13, out14, out15); \
  197. }
  198. /* Description : Load 2 vectors of double precision floating point elements with stride
  199. Arguments : Inputs - psrc, stride
  200. Outputs - out0, out1
  201. Return Type - double precision floating point
  202. */
  203. #define LD_DP2(psrc, stride, out0, out1) \
  204. { \
  205. out0 = LD_DP((psrc)); \
  206. out1 = LD_DP((psrc) + stride); \
  207. }
  208. #define LD_DP4(psrc, stride, out0, out1, out2, out3) \
  209. { \
  210. LD_DP2(psrc, stride, out0, out1) \
  211. LD_DP2(psrc + 2 * stride, stride, out2, out3) \
  212. }
  213. #define LD_DP2_INC(psrc, stride, out0, out1) \
  214. { \
  215. out0 = LD_DP(psrc); \
  216. (psrc) += stride; \
  217. out1 = LD_DP(psrc); \
  218. (psrc) += stride; \
  219. }
  220. #define LD_DP3_INC(psrc, stride, out0, \
  221. out1, out2) \
  222. { \
  223. LD_DP2_INC(psrc, stride, out0, out1); \
  224. out2 = LD_DP((psrc)); \
  225. (psrc) += stride; \
  226. }
  227. #define LD_DP4_INC(psrc, stride, out0, \
  228. out1, out2, out3) \
  229. { \
  230. LD_DP2_INC(psrc, stride, out0, out1); \
  231. LD_DP2_INC(psrc, stride, out2, out3); \
  232. }
  233. #define LD_DP5_INC(psrc, stride, out0, \
  234. out1, out2, out3, out4) \
  235. { \
  236. LD_DP2_INC(psrc, stride, out0, out1); \
  237. LD_DP2_INC(psrc, stride, out2, out3); \
  238. out4 = LD_DP((psrc)); \
  239. (psrc) += stride; \
  240. }
  241. #define LD_DP6_INC(psrc, stride, out0, \
  242. out1, out2, out3, \
  243. out4, out5) \
  244. { \
  245. LD_DP2_INC(psrc, stride, out0, out1); \
  246. LD_DP2_INC(psrc, stride, out2, out3); \
  247. LD_DP2_INC(psrc, stride, out4, out5); \
  248. }
  249. #define LD_DP7_INC(psrc, stride, out0, \
  250. out1, out2, out3, \
  251. out4, out5, out6) \
  252. { \
  253. LD_DP2_INC(psrc, stride, out0, out1); \
  254. LD_DP2_INC(psrc, stride, out2, out3); \
  255. LD_DP2_INC(psrc, stride, out4, out5); \
  256. out6 = LD_DP((psrc)); \
  257. (psrc) += stride; \
  258. }
  259. #define LD_DP8_INC(psrc, stride, out0, out1, out2, \
  260. out3, out4, out5, out6, out7) \
  261. { \
  262. LD_DP4_INC(psrc, stride, out0, out1, out2, out3); \
  263. LD_DP4_INC(psrc, stride, out4, out5, out6, out7); \
  264. }
  265. #define LD_DP16_INC(psrc, stride, out0, out1, out2, \
  266. out3, out4, out5, out6, out7, out8, \
  267. out9, out10, out11, out12, out13, \
  268. out14, out15) \
  269. { \
  270. LD_DP8_INC(psrc, stride, out0, out1, out2, \
  271. out3, out4, out5, out6, out7); \
  272. LD_DP8_INC(psrc, stride, out8, out9, out10, \
  273. out11, out12, out13, out14, out15); \
  274. }
  275. /* Description : Store GP variable with stride
  276. Arguments : Inputs - in0, in1, pdst, stride
  277. Details : Store 4 single precision floating point elements from 'in0' to (pdst)
  278. Store 4 single precision floating point elements from 'in1' to (pdst + stride)
  279. */
  280. #define ST_GP2_INC(in0, in1, \
  281. pdst, stride) \
  282. { \
  283. *(pdst) = in0; \
  284. (pdst) += stride; \
  285. *(pdst) = in1; \
  286. (pdst) += stride; \
  287. }
  288. #define ST_GP3_INC(in0, in1, in2, \
  289. pdst, stride) \
  290. { \
  291. ST_GP2_INC(in0, in1, pdst, stride); \
  292. *(pdst) = in2; \
  293. (pdst) += stride; \
  294. }
  295. #define ST_GP4_INC(in0, in1, in2, in3, \
  296. pdst, stride) \
  297. { \
  298. ST_GP2_INC(in0, in1, pdst, stride); \
  299. ST_GP2_INC(in2, in3, pdst, stride); \
  300. }
  301. #define ST_GP5_INC(in0, in1, in2, in3, \
  302. in4, pdst, stride) \
  303. { \
  304. ST_GP2_INC(in0, in1, pdst, stride); \
  305. ST_GP2_INC(in2, in3, pdst, stride); \
  306. *(pdst) = in4; \
  307. (pdst) += stride; \
  308. }
  309. #define ST_GP6_INC(in0, in1, in2, in3, \
  310. in4, in5, pdst, stride) \
  311. { \
  312. ST_GP2_INC(in0, in1, pdst, stride); \
  313. ST_GP2_INC(in2, in3, pdst, stride); \
  314. ST_GP2_INC(in4, in5, pdst, stride); \
  315. }
  316. #define ST_GP7_INC(in0, in1, in2, in3, in4, \
  317. in5, in6, pdst, stride) \
  318. { \
  319. ST_GP2_INC(in0, in1, pdst, stride); \
  320. ST_GP2_INC(in2, in3, pdst, stride); \
  321. ST_GP2_INC(in4, in5, pdst, stride); \
  322. *(pdst) = in6; \
  323. (pdst) += stride; \
  324. }
  325. #define ST_GP8_INC(in0, in1, in2, in3, in4, in5, \
  326. in6, in7, pdst, stride) \
  327. { \
  328. ST_GP4_INC(in0, in1, in2, in3, pdst, stride); \
  329. ST_GP4_INC(in4, in5, in6, in7, pdst, stride); \
  330. }
  331. /* Description : Store vectors of single precision floating point elements with stride
  332. Arguments : Inputs - in0, in1, pdst, stride
  333. Details : Store 4 single precision floating point elements from 'in0' to (pdst)
  334. Store 4 single precision floating point elements from 'in1' to (pdst + stride)
  335. */
  336. #define ST_SP2(in0, in1, pdst, stride) \
  337. { \
  338. ST_SP(in0, (pdst)); \
  339. ST_SP(in1, (pdst) + stride); \
  340. }
  341. #define ST_SP4(in0, in1, in2, in3, pdst, stride) \
  342. { \
  343. ST_SP2(in0, in1, (pdst), stride); \
  344. ST_SP2(in2, in3, (pdst + 2 * stride), stride); \
  345. }
  346. #define ST_SP8(in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
  347. { \
  348. ST_SP4(in0, in1, in2, in3, (pdst), stride); \
  349. ST_SP4(in4, in5, in6, in7, (pdst + 4 * stride), stride); \
  350. }
  351. #define ST_SP2_INC(in0, in1, pdst, stride) \
  352. { \
  353. ST_SP(in0, (pdst)); \
  354. (pdst) += stride; \
  355. ST_SP(in1, (pdst)); \
  356. (pdst) += stride; \
  357. }
  358. #define ST_SP3_INC(in0, in1, in2, \
  359. pdst, stride) \
  360. { \
  361. ST_SP2_INC(in0, in1, pdst, stride); \
  362. ST_SP(in2, (pdst)); \
  363. (pdst) += stride; \
  364. }
  365. #define ST_SP4_INC(in0, in1, in2, in3, \
  366. pdst, stride) \
  367. { \
  368. ST_SP2_INC(in0, in1, pdst, stride); \
  369. ST_SP2_INC(in2, in3, pdst, stride); \
  370. }
  371. #define ST_SP5_INC(in0, in1, in2, in3, \
  372. in4, pdst, stride) \
  373. { \
  374. ST_SP2_INC(in0, in1, pdst, stride); \
  375. ST_SP2_INC(in2, in3, pdst, stride); \
  376. ST_SP(in4, (pdst)); \
  377. (pdst) += stride; \
  378. }
  379. #define ST_SP6_INC(in0, in1, in2, in3, \
  380. in4, in5, pdst, stride) \
  381. { \
  382. ST_SP2_INC(in0, in1, pdst, stride); \
  383. ST_SP2_INC(in2, in3, pdst, stride); \
  384. ST_SP2_INC(in4, in5, pdst, stride); \
  385. }
  386. #define ST_SP7_INC(in0, in1, in2, in3, in4, \
  387. in5, in6, pdst, stride) \
  388. { \
  389. ST_SP2_INC(in0, in1, pdst, stride); \
  390. ST_SP2_INC(in2, in3, pdst, stride); \
  391. ST_SP2_INC(in4, in5, pdst, stride); \
  392. ST_SP(in6, (pdst)); \
  393. (pdst) += stride; \
  394. }
  395. #define ST_SP8_INC(in0, in1, in2, in3, in4, in5, \
  396. in6, in7, pdst, stride) \
  397. { \
  398. ST_SP4_INC(in0, in1, in2, in3, pdst, stride); \
  399. ST_SP4_INC(in4, in5, in6, in7, pdst, stride); \
  400. }
  401. #define ST_SP16_INC(in0, in1, in2, in3, in4, in5, in6, \
  402. in7, in8, in9, in10, in11, in12, \
  403. in13, in14, in15, pdst, stride) \
  404. { \
  405. ST_SP8_INC(in0, in1, in2, in3, in4, in5, in6, \
  406. in7, pdst, stride); \
  407. ST_SP8_INC(in8, in9, in10, in11, in12, in13, in14, \
  408. in15, pdst, stride); \
  409. }
  410. /* Description : Store vectors of double precision floating point elements with stride
  411. Arguments : Inputs - in0, in1, pdst, stride
  412. Details : Store 2 double precision floating point elements from 'in0' to (pdst)
  413. Store 2 double precision floating point elements from 'in1' to (pdst + stride)
  414. */
  415. #define ST_DP2(in0, in1, pdst, stride) \
  416. { \
  417. ST_DP(in0, (pdst)); \
  418. ST_DP(in1, (pdst) + stride); \
  419. }
  420. #define ST_DP4(in0, in1, in2, in3, pdst, stride) \
  421. { \
  422. ST_DP2(in0, in1, (pdst), stride); \
  423. ST_DP2(in2, in3, (pdst) + 2 * stride, stride); \
  424. }
  425. #define ST_DP8(in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \
  426. { \
  427. ST_DP4(in0, in1, in2, in3, (pdst), stride); \
  428. ST_DP4(in4, in5, in6, in7, (pdst) + 4 * stride, stride); \
  429. }
  430. #define ST_DP2_INC(in0, in1, pdst, stride) \
  431. { \
  432. ST_DP(in0, (pdst)); \
  433. (pdst) += stride; \
  434. ST_DP(in1, (pdst)); \
  435. (pdst) += stride; \
  436. }
  437. #define ST_DP3_INC(in0, in1, in2, \
  438. pdst, stride) \
  439. { \
  440. ST_DP2_INC(in0, in1, pdst, stride); \
  441. ST_DP(in2, (pdst)); \
  442. (pdst) += stride; \
  443. }
  444. #define ST_DP4_INC(in0, in1, in2, in3, \
  445. pdst, stride) \
  446. { \
  447. ST_DP2_INC(in0, in1, pdst, stride); \
  448. ST_DP2_INC(in2, in3, pdst, stride); \
  449. }
  450. #define ST_DP5_INC(in0, in1, in2, in3, \
  451. in4, pdst, stride) \
  452. { \
  453. ST_DP2_INC(in0, in1, pdst, stride); \
  454. ST_DP2_INC(in2, in3, pdst, stride); \
  455. ST_DP(in4, (pdst)); \
  456. (pdst) += stride; \
  457. }
  458. #define ST_DP6_INC(in0, in1, in2, in3, \
  459. in4, in5, pdst, stride) \
  460. { \
  461. ST_DP2_INC(in0, in1, pdst, stride); \
  462. ST_DP2_INC(in2, in3, pdst, stride); \
  463. ST_DP2_INC(in4, in5, pdst, stride); \
  464. }
  465. #define ST_DP7_INC(in0, in1, in2, in3, in4, \
  466. in5, in6, pdst, stride) \
  467. { \
  468. ST_DP2_INC(in0, in1, pdst, stride); \
  469. ST_DP2_INC(in2, in3, pdst, stride); \
  470. ST_DP2_INC(in4, in5, pdst, stride); \
  471. ST_DP(in6, (pdst)); \
  472. (pdst) += stride; \
  473. }
  474. #define ST_DP8_INC(in0, in1, in2, in3, in4, in5, \
  475. in6, in7, pdst, stride) \
  476. { \
  477. ST_DP4_INC(in0, in1, in2, in3, pdst, stride); \
  478. ST_DP4_INC(in4, in5, in6, in7, pdst, stride); \
  479. }
  480. #define ST_DP16_INC(in0, in1, in2, in3, in4, in5, in6, \
  481. in7, in8, in9, in10, in11, in12, \
  482. in13, in14, in15, pdst, stride) \
  483. { \
  484. ST_DP8_INC(in0, in1, in2, in3, in4, in5, in6, \
  485. in7, pdst, stride); \
  486. ST_DP8_INC(in8, in9, in10, in11, in12, in13, in14, \
  487. in15, pdst, stride); \
  488. }
  489. /* Description : shuffle elements in vector as shf_val
  490. Arguments : Inputs - in0, in1
  491. Outputs - out0, out1
  492. Return Type - as per RTYPE
  493. */
  494. #define SHF_W2(RTYPE, in0, in1, out0, out1, shf_val) \
  495. { \
  496. out0 = (RTYPE) __msa_shf_w((v4i32) in0, shf_val); \
  497. out1 = (RTYPE) __msa_shf_w((v4i32) in1, shf_val); \
  498. }
  499. #define SHF_W2_SP(...) SHF_W2(v4f32, __VA_ARGS__)
  500. #define SHF_W2_DP(...) SHF_W2(v2f64, __VA_ARGS__)
  501. #define SHF_W3(RTYPE, in0, in1, in2, out0, out1, out2, \
  502. shf_val) \
  503. { \
  504. out0 = (RTYPE) __msa_shf_w((v4i32) in0, shf_val); \
  505. out1 = (RTYPE) __msa_shf_w((v4i32) in1, shf_val); \
  506. out2 = (RTYPE) __msa_shf_w((v4i32) in2, shf_val); \
  507. }
  508. #define SHF_W3_SP(...) SHF_W3(v4f32, __VA_ARGS__)
  509. #define SHF_W4(RTYPE, in0, in1, in2, in3, \
  510. out0, out1, out2, out3, shf_val) \
  511. { \
  512. SHF_W2(RTYPE, in0, in1, out0, out1, shf_val); \
  513. SHF_W2(RTYPE, in2, in3, out2, out3, shf_val); \
  514. }
  515. #define SHF_W4_SP(...) SHF_W4(v4f32, __VA_ARGS__)
  516. #define SHF_W4_DP(...) SHF_W4(v2f64, __VA_ARGS__)
  517. /* Description : Interleave both left and right half of input vectors
  518. Arguments : Inputs - in0, in1
  519. Outputs - out0, out1
  520. Return Type - as per RTYPE
  521. Details : Right half of byte elements from 'in0' and 'in1' are
  522. interleaved and written to 'out0'
  523. */
  524. #define ILVRL_W2(RTYPE, in0, in1, out0, out1) \
  525. { \
  526. out0 = (RTYPE) __msa_ilvr_w((v4i32) in0, (v4i32) in1); \
  527. out1 = (RTYPE) __msa_ilvl_w((v4i32) in0, (v4i32) in1); \
  528. }
  529. #define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__)
  530. #define ILVRL_W2_SP(...) ILVRL_W2(v4f32, __VA_ARGS__)
  531. #define ILVRL_D2(RTYPE, in0, in1, out0, out1) \
  532. { \
  533. out0 = (RTYPE) __msa_ilvr_d((v2i64) in0, (v2i64) in1); \
  534. out1 = (RTYPE) __msa_ilvl_d((v2i64) in0, (v2i64) in1); \
  535. }
  536. #define ILVRL_D2_SP(...) ILVRL_D2(v4f32, __VA_ARGS__)
  537. #define ILVRL_D2_DP(...) ILVRL_D2(v2f64, __VA_ARGS__)
  538. /* Description : Indexed word element values are replicated to all
  539. elements in output vector
  540. Arguments : Inputs - in, stidx
  541. Outputs - out0, out1
  542. Return Type - as per RTYPE
  543. Details : 'stidx' element value from 'in' vector is replicated to all
  544. elements in 'out0' vector
  545. 'stidx + 1' element value from 'in' vector is replicated to all
  546. elements in 'out1' vector
  547. Valid index range for word operation is 0-3
  548. */
  549. #define SPLATI_W2(RTYPE, in, stidx, out0, out1) \
  550. { \
  551. out0 = (RTYPE) __msa_splati_w((v4i32) in, stidx); \
  552. out1 = (RTYPE) __msa_splati_w((v4i32) in, (stidx+1)); \
  553. }
  554. #define SPLATI_W2_SP(...) SPLATI_W2(v4f32, __VA_ARGS__)
  555. #define SPLATI_W4(RTYPE, in, out0, out1, out2, out3) \
  556. { \
  557. SPLATI_W2(RTYPE, in, 0, out0, out1); \
  558. SPLATI_W2(RTYPE, in, 2, out2, out3); \
  559. }
  560. #define SPLATI_W4_SP(...) SPLATI_W4(v4f32, __VA_ARGS__)
  561. #define SPLATI_D2(RTYPE, in, out0, out1) \
  562. { \
  563. out0 = (RTYPE) __msa_splati_d((v2i64) in, 0); \
  564. out1 = (RTYPE) __msa_splati_d((v2i64) in, 1); \
  565. }
  566. #define SPLATI_D2_DP(...) SPLATI_D2(v2f64, __VA_ARGS__)
  567. /* Description : Pack even double word elements of vector pairs
  568. Arguments : Inputs - in0, in1, in2, in3
  569. Outputs - out0, out1
  570. Return Type - as per RTYPE
  571. Details : Even double word elements of 'in0' are copied to the left half
  572. of 'out0' & even double word elements of 'in1' are copied to
  573. the right half of 'out0'.
  574. */
  575. #define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \
  576. { \
  577. out0 = (RTYPE) __msa_pckev_d((v2i64) in0, (v2i64) in1); \
  578. out1 = (RTYPE) __msa_pckev_d((v2i64) in2, (v2i64) in3); \
  579. }
  580. #define PCKEV_D2_SP(...) PCKEV_D2(v4f32, __VA_ARGS__)
  581. #define PCKEV_D2_SD(...) PCKEV_D2(v2f64, __VA_ARGS__)
  582. #define PCKEV_D3(RTYPE, in0, in1, in2, in3, in4, in5, \
  583. out0, out1, out2) \
  584. { \
  585. out0 = (RTYPE) __msa_pckev_d((v2i64) in0, (v2i64) in1); \
  586. out1 = (RTYPE) __msa_pckev_d((v2i64) in2, (v2i64) in3); \
  587. out2 = (RTYPE) __msa_pckev_d((v2i64) in4, (v2i64) in5); \
  588. }
  589. #define PCKEV_D3_SP(...) PCKEV_D3(v4f32, __VA_ARGS__)
  590. #define PCKEV_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
  591. out0, out1, out2, out3) \
  592. { \
  593. PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
  594. PCKEV_D2(RTYPE, in4, in5, in6, in7, out2, out3); \
  595. }
  596. #define PCKEV_D4_SP(...) PCKEV_D4(v4f32, __VA_ARGS__)
  597. /* Description : pack both even and odd half of input vectors
  598. Arguments : Inputs - in0, in1
  599. Outputs - out0, out1
  600. Return Type - as per RTYPE
  601. Details : Even double word elements of 'in0' and 'in1' are copied to the
  602. 'out0' & odd double word elements of 'in0' and 'in1' are
  603. copied to the 'out1'.
  604. */
  605. #define PCKEVOD_W2(RTYPE, in0, in1, out0, out1) \
  606. { \
  607. out0 = (RTYPE) __msa_pckev_w((v4i32) in0, (v4i32) in1); \
  608. out1 = (RTYPE) __msa_pckod_w((v4i32) in0, (v4i32) in1); \
  609. }
  610. #define PCKEVOD_W2_SP(...) PCKEVOD_W2(v4f32, __VA_ARGS__)
  611. #define PCKEVOD_D2(RTYPE, in0, in1, out0, out1) \
  612. { \
  613. out0 = (RTYPE) __msa_pckev_d((v2i64) in0, (v2i64) in1); \
  614. out1 = (RTYPE) __msa_pckod_d((v2i64) in0, (v2i64) in1); \
  615. }
  616. #define PCKEVOD_D2_DP(...) PCKEVOD_D2(v2f64, __VA_ARGS__)
  617. /* Description : Multiplication of pairs of vectors
  618. Arguments : Inputs - in0, in1, in2, in3
  619. Outputs - out0, out1
  620. Details : Each element from 'in0' is multiplied with elements from 'in1'
  621. and the result is written to 'out0'
  622. */
  623. #define MUL2(in0, in1, in2, in3, out0, out1) \
  624. { \
  625. out0 = in0 * in1; \
  626. out1 = in2 * in3; \
  627. }
  628. #define MUL3(in0, in1, in2, in3, in4, in5, \
  629. out0, out1, out2) \
  630. { \
  631. out0 = in0 * in1; \
  632. out1 = in2 * in3; \
  633. out2 = in4 * in5; \
  634. }
  635. #define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, \
  636. out0, out1, out2, out3) \
  637. { \
  638. MUL2(in0, in1, in2, in3, out0, out1); \
  639. MUL2(in4, in5, in6, in7, out2, out3); \
  640. }
  641. /* Description : Multiplication of pairs of vectors and added in output
  642. Arguments : Inputs - in0, in1, vec, out0, out1
  643. Outputs - out0, out1
  644. Details : Each element from 'in0' is multiplied with elements from 'vec'
  645. and the result is added to 'out0'
  646. */
  647. #define FMADD2(in0, in1, vec, inout0, inout1) \
  648. { \
  649. inout0 += in0 * vec; \
  650. inout1 += in1 * vec; \
  651. }
  652. #define FMADD3(in0, in1, in2, vec, \
  653. inout0, inout1, inout2) \
  654. { \
  655. inout0 += in0 * vec; \
  656. inout1 += in1 * vec; \
  657. inout2 += in2 * vec; \
  658. }
  659. #define FMADD4(in0, in1, in2, in3, vec, \
  660. inout0, inout1, inout2, inout3) \
  661. { \
  662. FMADD2(in0, in1, vec, inout0, inout1); \
  663. FMADD2(in2, in3, vec, inout2, inout3); \
  664. }
  665. /* Description : Addition of 2 pairs of variables
  666. Arguments : Inputs - in0, in1, in2, in3
  667. Outputs - out0, out1
  668. Details : Each element in 'in0' is added to 'in1' and result is written
  669. to 'out0'.
  670. */
  671. #define ADD2(in0, in1, in2, in3, out0, out1) \
  672. { \
  673. out0 = in0 + in1; \
  674. out1 = in2 + in3; \
  675. }
  676. #define ADD3(in0, in1, in2, in3, in4, in5, \
  677. out0, out1, out2) \
  678. { \
  679. out0 = in0 + in1; \
  680. out1 = in2 + in3; \
  681. out2 = in4 + in5; \
  682. }
  683. #define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, \
  684. out0, out1, out2, out3) \
  685. { \
  686. ADD2(in0, in1, in2, in3, out0, out1); \
  687. ADD2(in4, in5, in6, in7, out2, out3); \
  688. }
  689. /* Description : Transpose 4x4 block with word elements in vectors
  690. Arguments : Inputs - in0, in1, in2, in3
  691. Outputs - out0, out1, out2, out3
  692. Return Type - as per RTYPE
  693. */
  694. #define TRANSPOSE4x4_W(RTYPE, in0, in1, in2, in3, \
  695. out0, out1, out2, out3) \
  696. { \
  697. v4i32 s0_m, s1_m, s2_m, s3_m; \
  698. \
  699. ILVRL_W2_SW(in1, in0, s0_m, s1_m); \
  700. ILVRL_W2_SW(in3, in2, s2_m, s3_m); \
  701. ILVRL_D2(RTYPE, s2_m, s0_m, out0, out1); \
  702. ILVRL_D2(RTYPE, s3_m, s1_m, out2, out3); \
  703. }
  704. #define TRANSPOSE4x4_SP_SP(...) TRANSPOSE4x4_W(v4f32, __VA_ARGS__)
  705. #endif /* __MACROS_MSA_H__ */