You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

redundancy_shrink.go 31 kB

6 months ago
6 months ago
6 months ago
6 months ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. package ticktock
  2. import (
  3. "context"
  4. "fmt"
  5. "math"
  6. "math/rand"
  7. "sync"
  8. "github.com/samber/lo"
  9. "gitlink.org.cn/cloudream/common/pkgs/bitmap"
  10. "gitlink.org.cn/cloudream/common/pkgs/logger"
  11. "gitlink.org.cn/cloudream/common/utils/lo2"
  12. "gitlink.org.cn/cloudream/common/utils/math2"
  13. "gitlink.org.cn/cloudream/common/utils/sort2"
  14. "gitlink.org.cn/cloudream/jcs-pub/client/internal/db"
  15. "gitlink.org.cn/cloudream/jcs-pub/client/internal/publock"
  16. "gitlink.org.cn/cloudream/jcs-pub/common/consts"
  17. "gitlink.org.cn/cloudream/jcs-pub/common/pkgs/ioswitch/exec"
  18. "gitlink.org.cn/cloudream/jcs-pub/common/pkgs/ioswitch2"
  19. "gitlink.org.cn/cloudream/jcs-pub/common/pkgs/ioswitch2/ops2"
  20. "gitlink.org.cn/cloudream/jcs-pub/common/pkgs/ioswitch2/parser"
  21. jcstypes "gitlink.org.cn/cloudream/jcs-pub/common/types"
  22. "gitlink.org.cn/cloudream/jcs-pub/common/types/datamap"
  23. )
  24. func (t *ChangeRedundancy) doRedundancyShrink(execCtx *changeRedundancyContext, pkg jcstypes.PackageDetail, objs []jcstypes.ObjectDetail, reen *publock.Reentrant) ([]db.UpdatingObjectRedundancy, []datamap.SysEventBody, error) {
  25. log := logger.WithType[ChangeRedundancy]("TickTock")
  26. var readerStgIDs []jcstypes.UserSpaceID
  27. for _, space := range execCtx.allUserSpaces {
  28. // TODO 可以考虑做成配置
  29. if space.AccessAmount >= float64(pkg.ObjectCount/2) {
  30. readerStgIDs = append(readerStgIDs, space.UserSpace.UserSpace.UserSpaceID)
  31. }
  32. }
  33. // 只对ec和rep对象进行处理
  34. var ecObjects []jcstypes.ObjectDetail
  35. var repObjects []jcstypes.ObjectDetail
  36. for _, obj := range objs {
  37. if _, ok := obj.Object.Redundancy.(*jcstypes.ECRedundancy); ok {
  38. ecObjects = append(ecObjects, obj)
  39. } else if _, ok := obj.Object.Redundancy.(*jcstypes.RepRedundancy); ok {
  40. repObjects = append(repObjects, obj)
  41. }
  42. }
  43. planningStgIDs := make(map[jcstypes.UserSpaceID]bool)
  44. var sysEvents []datamap.SysEventBody
  45. // 对于rep对象,统计出所有对象块分布最多的两个节点,用这两个节点代表所有rep对象块的分布,去进行退火算法
  46. var repObjectsUpdating []db.UpdatingObjectRedundancy
  47. repMostHubIDs := t.summaryRepObjectBlockNodes(repObjects)
  48. solu := t.startAnnealing(execCtx, readerStgIDs, annealingObject{
  49. totalBlockCount: 1,
  50. minBlockCnt: 1,
  51. pinnedAt: repMostHubIDs,
  52. blocks: nil,
  53. })
  54. iRepObj := 0
  55. for iRepObj < len(repObjects) {
  56. planBld := exec.NewPlanBuilder()
  57. for c := 0; c < 10 && iRepObj < len(repObjects); c++ {
  58. repObjectsUpdating = append(repObjectsUpdating, t.makePlansForRepObject(execCtx, solu, repObjects[iRepObj], planBld, planningStgIDs))
  59. sysEvents = append(sysEvents, t.generateSysEventForRepObject(solu, repObjects[iRepObj])...)
  60. iRepObj++
  61. }
  62. _, err := t.executePlans(execCtx, planBld, planningStgIDs, reen)
  63. if err != nil {
  64. log.Warn(err.Error())
  65. return nil, nil, fmt.Errorf("execute plans: %w", err)
  66. }
  67. }
  68. // 对于ec对象,则每个对象单独进行退火算法
  69. var ecObjectsUpdating []db.UpdatingObjectRedundancy
  70. for i, obj := range ecObjects {
  71. ecRed := obj.Object.Redundancy.(*jcstypes.ECRedundancy)
  72. solu := t.startAnnealing(execCtx, readerStgIDs, annealingObject{
  73. totalBlockCount: ecRed.N,
  74. minBlockCnt: ecRed.K,
  75. pinnedAt: obj.PinnedAt,
  76. blocks: obj.Blocks,
  77. })
  78. planBld := exec.NewPlanBuilder()
  79. ecObjectsUpdating = append(ecObjectsUpdating, t.makePlansForECObject(execCtx, solu, obj, planBld, planningStgIDs))
  80. sysEvents = append(sysEvents, t.generateSysEventForECObject(solu, obj)...)
  81. ioSwRets, err := t.executePlans(execCtx, planBld, planningStgIDs, reen)
  82. if err != nil {
  83. log.Warn(err.Error())
  84. return nil, nil, fmt.Errorf("execute plans: %w", err)
  85. }
  86. // 根据按照方案进行调整的结果,填充更新元数据的命令
  87. t.populateECObjectEntry(&ecObjectsUpdating[i], obj, ioSwRets)
  88. }
  89. return append(repObjectsUpdating, ecObjectsUpdating...), sysEvents, nil
  90. }
  91. func (t *ChangeRedundancy) summaryRepObjectBlockNodes(objs []jcstypes.ObjectDetail) []jcstypes.UserSpaceID {
  92. type stgBlocks struct {
  93. UserSpaceID jcstypes.UserSpaceID
  94. Count int
  95. }
  96. stgBlocksMap := make(map[jcstypes.UserSpaceID]*stgBlocks)
  97. for _, obj := range objs {
  98. cacheBlockStgs := make(map[jcstypes.UserSpaceID]bool)
  99. for _, block := range obj.Blocks {
  100. if _, ok := stgBlocksMap[block.UserSpaceID]; !ok {
  101. stgBlocksMap[block.UserSpaceID] = &stgBlocks{
  102. UserSpaceID: block.UserSpaceID,
  103. Count: 0,
  104. }
  105. }
  106. stgBlocksMap[block.UserSpaceID].Count++
  107. cacheBlockStgs[block.UserSpaceID] = true
  108. }
  109. for _, hubID := range obj.PinnedAt {
  110. if cacheBlockStgs[hubID] {
  111. continue
  112. }
  113. if _, ok := stgBlocksMap[hubID]; !ok {
  114. stgBlocksMap[hubID] = &stgBlocks{
  115. UserSpaceID: hubID,
  116. Count: 0,
  117. }
  118. }
  119. stgBlocksMap[hubID].Count++
  120. }
  121. }
  122. stgs := lo.Values(stgBlocksMap)
  123. sort2.Sort(stgs, func(left *stgBlocks, right *stgBlocks) int {
  124. return right.Count - left.Count
  125. })
  126. // 只选出块数超过一半的节点,但要保证至少有两个节点
  127. for i := 2; i < len(stgs); i++ {
  128. if stgs[i].Count < len(objs)/2 {
  129. stgs = stgs[:i]
  130. break
  131. }
  132. }
  133. return lo.Map(stgs, func(item *stgBlocks, idx int) jcstypes.UserSpaceID { return item.UserSpaceID })
  134. }
  135. type annealingState struct {
  136. ctx *changeRedundancyContext
  137. readerStgIDs []jcstypes.UserSpaceID // 近期可能访问此对象的节点
  138. stgsSortedByReader map[jcstypes.UserSpaceID][]stgDist // 拥有数据的节点到每个可能访问对象的节点按距离排序
  139. object annealingObject // 进行退火的对象
  140. blockList []objectBlock // 排序后的块分布情况
  141. stgBlockBitmaps map[jcstypes.UserSpaceID]*bitmap.Bitmap64 // 用位图的形式表示每一个节点上有哪些块
  142. stgCombTree combinatorialTree // 节点组合树,用于加速计算容灾度
  143. maxScore float64 // 搜索过程中得到过的最大分数
  144. maxScoreRmBlocks []bool // 最大分数对应的删除方案
  145. rmBlocks []bool // 当前删除方案
  146. inversedIndex int // 当前删除方案是从上一次的方案改动哪个flag而来的
  147. lastDisasterTolerance float64 // 上一次方案的容灾度
  148. lastSpaceCost float64 // 上一次方案的冗余度
  149. lastMinAccessCost float64 // 上一次方案的最小访问费用
  150. lastScore float64 // 上一次方案的分数
  151. }
  152. type objectBlock struct {
  153. Index int
  154. UserSpaceID jcstypes.UserSpaceID
  155. HasEntity bool // 节点拥有实际的文件数据块
  156. HasShadow bool // 如果节点拥有完整文件数据,那么认为这个节点拥有所有块,这些块被称为影子块
  157. FileHash jcstypes.FileHash // 只有在拥有实际文件数据块时,这个字段才有值。注:Rep对象由于是一批对象同时进行退火的,所以这个字段为空。
  158. Size int64 // 块大小。注:Rep对象由于是一批对象同时进行退火的,所以这个字段为空。
  159. }
  160. type stgDist struct {
  161. UserSpaceID jcstypes.UserSpaceID
  162. Distance float64
  163. }
  164. type combinatorialTree struct {
  165. nodes []combinatorialTreeNode
  166. blocksMaps map[int]bitmap.Bitmap64
  167. stgIDToLocalStgID map[jcstypes.UserSpaceID]int
  168. localStgIDToStgID []jcstypes.UserSpaceID
  169. }
  170. type annealingObject struct {
  171. totalBlockCount int
  172. minBlockCnt int
  173. pinnedAt []jcstypes.UserSpaceID
  174. blocks []jcstypes.ObjectBlock
  175. }
  176. const (
  177. iterActionNone = 0
  178. iterActionSkip = 1
  179. iterActionBreak = 2
  180. )
  181. func newCombinatorialTree(stgBlocksMaps map[jcstypes.UserSpaceID]*bitmap.Bitmap64) combinatorialTree {
  182. tree := combinatorialTree{
  183. blocksMaps: make(map[int]bitmap.Bitmap64),
  184. stgIDToLocalStgID: make(map[jcstypes.UserSpaceID]int),
  185. }
  186. tree.nodes = make([]combinatorialTreeNode, (1 << len(stgBlocksMaps)))
  187. for id, mp := range stgBlocksMaps {
  188. tree.stgIDToLocalStgID[id] = len(tree.localStgIDToStgID)
  189. tree.blocksMaps[len(tree.localStgIDToStgID)] = *mp
  190. tree.localStgIDToStgID = append(tree.localStgIDToStgID, id)
  191. }
  192. tree.nodes[0].localHubID = -1
  193. index := 1
  194. tree.initNode(0, &tree.nodes[0], &index)
  195. return tree
  196. }
  197. func (t *combinatorialTree) initNode(minAvaiLocalHubID int, parent *combinatorialTreeNode, index *int) {
  198. for i := minAvaiLocalHubID; i < len(t.stgIDToLocalStgID); i++ {
  199. curIndex := *index
  200. *index++
  201. bitMp := t.blocksMaps[i]
  202. bitMp.Or(&parent.blocksBitmap)
  203. t.nodes[curIndex] = combinatorialTreeNode{
  204. localHubID: i,
  205. parent: parent,
  206. blocksBitmap: bitMp,
  207. }
  208. t.initNode(i+1, &t.nodes[curIndex], index)
  209. }
  210. }
  211. // 获得索引指定的节点所在的层
  212. func (t *combinatorialTree) GetDepth(index int) int {
  213. depth := 0
  214. // 反复判断节点在哪个子树。从左到右,子树节点的数量呈现8 4 2的变化,由此可以得到每个子树的索引值的范围
  215. subTreeCount := 1 << len(t.stgIDToLocalStgID)
  216. for index > 0 {
  217. if index < subTreeCount {
  218. // 定位到一个子树后,深度+1,然后进入这个子树,使用同样的方法再进行定位。
  219. // 进入子树后需要将索引值-1,因为要去掉子树的根节点
  220. index--
  221. depth++
  222. } else {
  223. // 如果索引值不在这个子树范围内,则将值减去子树的节点数量,
  224. // 这样每一次都可以视为使用同样的逻辑对不同大小的树进行判断。
  225. index -= subTreeCount
  226. }
  227. subTreeCount >>= 1
  228. }
  229. return depth
  230. }
  231. // 更新某一个算力中心节点的块分布位图,同时更新它对应组合树节点的所有子节点。
  232. // 如果更新到某个节点时,已有K个块,那么就不会再更新它的子节点
  233. func (t *combinatorialTree) UpdateBitmap(stgID jcstypes.UserSpaceID, mp bitmap.Bitmap64, k int) {
  234. t.blocksMaps[t.stgIDToLocalStgID[stgID]] = mp
  235. // 首先定义两种遍历树节点时的移动方式:
  236. // 1. 竖直移动(深度增加):从一个节点移动到它最左边的子节点。每移动一步,index+1
  237. // 2. 水平移动:从一个节点移动到它右边的兄弟节点。每移动一步,根据它所在的深度,index+8,+4,+2
  238. // LocalID从0开始,将其+1后得到移动步数steps。
  239. // 将移动步数拆成多部分,分配到上述的两种移动方式上,并进行任意组合,且保证第一次为至少进行一次的竖直移动,移动之后的节点都会是同一个计算中心节点。
  240. steps := t.stgIDToLocalStgID[stgID] + 1
  241. for d := 1; d <= steps; d++ {
  242. t.iterCombBits(len(t.stgIDToLocalStgID)-1, steps-d, 0, func(i int) {
  243. index := d + i
  244. node := &t.nodes[index]
  245. newMp := t.blocksMaps[node.localHubID]
  246. newMp.Or(&node.parent.blocksBitmap)
  247. node.blocksBitmap = newMp
  248. if newMp.Weight() >= k {
  249. return
  250. }
  251. t.iterChildren(index, func(index, parentIndex, depth int) int {
  252. curNode := &t.nodes[index]
  253. parentNode := t.nodes[parentIndex]
  254. newMp := t.blocksMaps[curNode.localHubID]
  255. newMp.Or(&parentNode.blocksBitmap)
  256. curNode.blocksBitmap = newMp
  257. if newMp.Weight() >= k {
  258. return iterActionSkip
  259. }
  260. return iterActionNone
  261. })
  262. })
  263. }
  264. }
  265. // 遍历树,找到至少拥有K个块的树节点的最大深度
  266. func (t *combinatorialTree) FindKBlocksMaxDepth(k int) int {
  267. maxDepth := -1
  268. t.iterChildren(0, func(index, parentIndex, depth int) int {
  269. if t.nodes[index].blocksBitmap.Weight() >= k {
  270. if maxDepth < depth {
  271. maxDepth = depth
  272. }
  273. return iterActionSkip
  274. }
  275. // 如果到了叶子节点,还没有找到K个块,那就认为要满足K个块,至少需要再多一个节点,即深度+1。
  276. // 由于遍历时采用的是深度优先的算法,因此遍历到这个叶子节点时,叶子节点再加一个节点的组合已经在前面搜索过,
  277. // 所以用当前叶子节点深度+1来作为当前分支的结果就可以,即使当前情况下增加任意一个节点依然不够K块,
  278. // 可以使用同样的思路去递推到当前叶子节点增加两个块的情况。
  279. if t.nodes[index].localHubID == len(t.stgIDToLocalStgID)-1 {
  280. if maxDepth < depth+1 {
  281. maxDepth = depth + 1
  282. }
  283. }
  284. return iterActionNone
  285. })
  286. if maxDepth == -1 || maxDepth > len(t.stgIDToLocalStgID) {
  287. return len(t.stgIDToLocalStgID)
  288. }
  289. return maxDepth
  290. }
  291. func (t *combinatorialTree) iterCombBits(width int, count int, offset int, callback func(int)) {
  292. if count == 0 {
  293. callback(offset)
  294. return
  295. }
  296. for b := width; b >= count; b-- {
  297. t.iterCombBits(b-1, count-1, offset+(1<<b), callback)
  298. }
  299. }
  300. func (t *combinatorialTree) iterChildren(index int, do func(index int, parentIndex int, depth int) int) {
  301. curNode := &t.nodes[index]
  302. childIndex := index + 1
  303. curDepth := t.GetDepth(index)
  304. childCounts := len(t.stgIDToLocalStgID) - 1 - curNode.localHubID
  305. if childCounts == 0 {
  306. return
  307. }
  308. childTreeNodeCnt := 1 << (childCounts - 1)
  309. for c := 0; c < childCounts; c++ {
  310. act := t.itering(childIndex, index, curDepth+1, do)
  311. if act == iterActionBreak {
  312. return
  313. }
  314. childIndex += childTreeNodeCnt
  315. childTreeNodeCnt >>= 1
  316. }
  317. }
  318. func (t *combinatorialTree) itering(index int, parentIndex int, depth int, do func(index int, parentIndex int, depth int) int) int {
  319. act := do(index, parentIndex, depth)
  320. if act == iterActionBreak {
  321. return act
  322. }
  323. if act == iterActionSkip {
  324. return iterActionNone
  325. }
  326. curNode := &t.nodes[index]
  327. childIndex := index + 1
  328. childCounts := len(t.stgIDToLocalStgID) - 1 - curNode.localHubID
  329. if childCounts == 0 {
  330. return iterActionNone
  331. }
  332. childTreeNodeCnt := 1 << (childCounts - 1)
  333. for c := 0; c < childCounts; c++ {
  334. act = t.itering(childIndex, index, depth+1, do)
  335. if act == iterActionBreak {
  336. return act
  337. }
  338. childIndex += childTreeNodeCnt
  339. childTreeNodeCnt >>= 1
  340. }
  341. return iterActionNone
  342. }
  343. type combinatorialTreeNode struct {
  344. localHubID int
  345. parent *combinatorialTreeNode
  346. blocksBitmap bitmap.Bitmap64 // 选择了这个中心之后,所有中心一共包含多少种块
  347. }
  348. type annealingSolution struct {
  349. blockList []objectBlock // 所有节点的块分布情况
  350. rmBlocks []bool // 要删除哪些块
  351. disasterTolerance float64 // 本方案的容灾度
  352. spaceCost float64 // 本方案的冗余度
  353. minAccessCost float64 // 本方案的最小访问费用
  354. }
  355. func (t *ChangeRedundancy) startAnnealing(ctx *changeRedundancyContext, readerStgIDs []jcstypes.UserSpaceID, object annealingObject) annealingSolution {
  356. state := &annealingState{
  357. ctx: ctx,
  358. readerStgIDs: readerStgIDs,
  359. stgsSortedByReader: make(map[jcstypes.UserSpaceID][]stgDist),
  360. object: object,
  361. stgBlockBitmaps: make(map[jcstypes.UserSpaceID]*bitmap.Bitmap64),
  362. }
  363. t.initBlockList(state)
  364. if state.blockList == nil {
  365. return annealingSolution{}
  366. }
  367. t.initNodeBlockBitmap(state)
  368. t.sortNodeByReaderDistance(state)
  369. state.rmBlocks = make([]bool, len(state.blockList))
  370. state.inversedIndex = -1
  371. state.stgCombTree = newCombinatorialTree(state.stgBlockBitmaps)
  372. state.lastScore = t.calcScore(state)
  373. state.maxScore = state.lastScore
  374. state.maxScoreRmBlocks = lo2.ArrayClone(state.rmBlocks)
  375. // 模拟退火算法的温度
  376. curTemp := state.lastScore
  377. // 结束温度
  378. finalTemp := curTemp * 0.2
  379. // 冷却率
  380. coolingRate := 0.95
  381. for curTemp > finalTemp {
  382. state.inversedIndex = rand.Intn(len(state.rmBlocks))
  383. block := state.blockList[state.inversedIndex]
  384. state.rmBlocks[state.inversedIndex] = !state.rmBlocks[state.inversedIndex]
  385. state.stgBlockBitmaps[block.UserSpaceID].Set(block.Index, !state.rmBlocks[state.inversedIndex])
  386. state.stgCombTree.UpdateBitmap(block.UserSpaceID, *state.stgBlockBitmaps[block.UserSpaceID], state.object.minBlockCnt)
  387. curScore := t.calcScore(state)
  388. dScore := curScore - state.lastScore
  389. // 如果新方案比旧方案得分低,且没有要求强制接受新方案,那么就将变化改回去
  390. if curScore == 0 || (dScore < 0 && !t.alwaysAccept(curTemp, dScore, coolingRate)) {
  391. state.rmBlocks[state.inversedIndex] = !state.rmBlocks[state.inversedIndex]
  392. state.stgBlockBitmaps[block.UserSpaceID].Set(block.Index, !state.rmBlocks[state.inversedIndex])
  393. state.stgCombTree.UpdateBitmap(block.UserSpaceID, *state.stgBlockBitmaps[block.UserSpaceID], state.object.minBlockCnt)
  394. // fmt.Printf("\n")
  395. } else {
  396. // fmt.Printf(" accept!\n")
  397. state.lastScore = curScore
  398. if state.maxScore < curScore {
  399. state.maxScore = state.lastScore
  400. state.maxScoreRmBlocks = lo2.ArrayClone(state.rmBlocks)
  401. }
  402. }
  403. curTemp *= coolingRate
  404. }
  405. // fmt.Printf("final: %v\n", state.maxScoreRmBlocks)
  406. return annealingSolution{
  407. blockList: state.blockList,
  408. rmBlocks: state.maxScoreRmBlocks,
  409. disasterTolerance: state.lastDisasterTolerance,
  410. spaceCost: state.lastSpaceCost,
  411. minAccessCost: state.lastMinAccessCost,
  412. }
  413. }
  414. func (t *ChangeRedundancy) initBlockList(ctx *annealingState) {
  415. blocksMap := make(map[jcstypes.UserSpaceID][]objectBlock)
  416. // 先生成所有的影子块
  417. for _, pinned := range ctx.object.pinnedAt {
  418. blocks := make([]objectBlock, 0, ctx.object.totalBlockCount)
  419. for i := 0; i < ctx.object.totalBlockCount; i++ {
  420. blocks = append(blocks, objectBlock{
  421. Index: i,
  422. UserSpaceID: pinned,
  423. HasShadow: true,
  424. })
  425. }
  426. blocksMap[pinned] = blocks
  427. }
  428. // 再填充实际块
  429. for _, b := range ctx.object.blocks {
  430. blocks := blocksMap[b.UserSpaceID]
  431. has := false
  432. for i := range blocks {
  433. if blocks[i].Index == b.Index {
  434. blocks[i].HasEntity = true
  435. blocks[i].FileHash = b.FileHash
  436. has = true
  437. break
  438. }
  439. }
  440. if has {
  441. continue
  442. }
  443. blocks = append(blocks, objectBlock{
  444. Index: b.Index,
  445. UserSpaceID: b.UserSpaceID,
  446. HasEntity: true,
  447. FileHash: b.FileHash,
  448. Size: b.Size,
  449. })
  450. blocksMap[b.UserSpaceID] = blocks
  451. }
  452. var sortedBlocks []objectBlock
  453. for _, bs := range blocksMap {
  454. sortedBlocks = append(sortedBlocks, bs...)
  455. }
  456. sortedBlocks = sort2.Sort(sortedBlocks, func(left objectBlock, right objectBlock) int {
  457. d := left.UserSpaceID - right.UserSpaceID
  458. if d != 0 {
  459. return int(d)
  460. }
  461. return left.Index - right.Index
  462. })
  463. ctx.blockList = sortedBlocks
  464. }
  465. func (t *ChangeRedundancy) initNodeBlockBitmap(state *annealingState) {
  466. for _, b := range state.blockList {
  467. mp, ok := state.stgBlockBitmaps[b.UserSpaceID]
  468. if !ok {
  469. nb := bitmap.Bitmap64(0)
  470. mp = &nb
  471. state.stgBlockBitmaps[b.UserSpaceID] = mp
  472. }
  473. mp.Set(b.Index, true)
  474. }
  475. }
  476. func (t *ChangeRedundancy) sortNodeByReaderDistance(state *annealingState) {
  477. for _, r := range state.readerStgIDs {
  478. var nodeDists []stgDist
  479. for n := range state.stgBlockBitmaps {
  480. if r == n {
  481. // 同节点时距离视为0.1
  482. nodeDists = append(nodeDists, stgDist{
  483. UserSpaceID: n,
  484. Distance: consts.StorageDistanceSameStorage,
  485. })
  486. } else if state.ctx.allUserSpaces[r].UserSpace.UserSpace.Storage.GetLocation() == state.ctx.allUserSpaces[n].UserSpace.UserSpace.Storage.GetLocation() {
  487. // 同地区时距离视为1
  488. nodeDists = append(nodeDists, stgDist{
  489. UserSpaceID: n,
  490. Distance: consts.StorageDistanceSameLocation,
  491. })
  492. } else {
  493. // 不同地区时距离视为5
  494. nodeDists = append(nodeDists, stgDist{
  495. UserSpaceID: n,
  496. Distance: consts.StorageDistanceOther,
  497. })
  498. }
  499. }
  500. state.stgsSortedByReader[r] = sort2.Sort(nodeDists, func(left, right stgDist) int { return sort2.Cmp(left.Distance, right.Distance) })
  501. }
  502. }
  503. func (t *ChangeRedundancy) calcScore(state *annealingState) float64 {
  504. dt := t.calcDisasterTolerance(state)
  505. ac := t.calcMinAccessCost(state)
  506. sc := t.calcSpaceCost(state)
  507. state.lastDisasterTolerance = dt
  508. state.lastMinAccessCost = ac
  509. state.lastSpaceCost = sc
  510. dtSc := 1.0
  511. if dt < 1 {
  512. dtSc = 0
  513. } else if dt >= 2 {
  514. dtSc = 1.5
  515. }
  516. newSc := 0.0
  517. if dt == 0 || ac == 0 {
  518. newSc = 0
  519. } else {
  520. newSc = dtSc / (sc * ac)
  521. }
  522. // fmt.Printf("solu: %v, cur: %v, dt: %v, ac: %v, sc: %v \n", state.rmBlocks, newSc, dt, ac, sc)
  523. return newSc
  524. }
  525. // 计算容灾度
  526. func (t *ChangeRedundancy) calcDisasterTolerance(state *annealingState) float64 {
  527. if state.inversedIndex != -1 {
  528. node := state.blockList[state.inversedIndex]
  529. state.stgCombTree.UpdateBitmap(node.UserSpaceID, *state.stgBlockBitmaps[node.UserSpaceID], state.object.minBlockCnt)
  530. }
  531. return float64(len(state.stgBlockBitmaps) - state.stgCombTree.FindKBlocksMaxDepth(state.object.minBlockCnt))
  532. }
  533. // 计算最小访问数据的代价
  534. func (t *ChangeRedundancy) calcMinAccessCost(state *annealingState) float64 {
  535. cost := math.MaxFloat64
  536. for _, reader := range state.readerStgIDs {
  537. tarNodes := state.stgsSortedByReader[reader]
  538. gotBlocks := bitmap.Bitmap64(0)
  539. thisCost := 0.0
  540. for _, tar := range tarNodes {
  541. tarNodeMp := state.stgBlockBitmaps[tar.UserSpaceID]
  542. // 只需要从目的节点上获得缺少的块
  543. curWeigth := gotBlocks.Weight()
  544. // 下面的if会在拿到k个块之后跳出循环,所以or多了块也没关系
  545. gotBlocks.Or(tarNodeMp)
  546. // 但是算读取块的消耗时,不能多算,最多算读了k个块的消耗
  547. willGetBlocks := math2.Min(gotBlocks.Weight()-curWeigth, state.object.minBlockCnt-curWeigth)
  548. thisCost += float64(willGetBlocks) * float64(tar.Distance)
  549. if gotBlocks.Weight() >= state.object.minBlockCnt {
  550. break
  551. }
  552. }
  553. if gotBlocks.Weight() >= state.object.minBlockCnt {
  554. cost = math.Min(cost, thisCost)
  555. }
  556. }
  557. return cost
  558. }
  559. // 计算冗余度
  560. func (t *ChangeRedundancy) calcSpaceCost(ctx *annealingState) float64 {
  561. blockCount := 0
  562. for i, b := range ctx.blockList {
  563. if ctx.rmBlocks[i] {
  564. continue
  565. }
  566. if b.HasEntity {
  567. blockCount++
  568. }
  569. if b.HasShadow {
  570. blockCount++
  571. }
  572. }
  573. // 所有算力中心上拥有的块的总数 / 一个对象被分成了几个块
  574. return float64(blockCount) / float64(ctx.object.minBlockCnt)
  575. }
  576. // 如果新方案得分比旧方案小,那么在一定概率内也接受新方案
  577. func (t *ChangeRedundancy) alwaysAccept(curTemp float64, dScore float64, coolingRate float64) bool {
  578. v := math.Exp(dScore / curTemp / coolingRate)
  579. // fmt.Printf(" -- chance: %v, temp: %v", v, curTemp)
  580. return v > rand.Float64()
  581. }
  582. func (t *ChangeRedundancy) makePlansForRepObject(ctx *changeRedundancyContext, solu annealingSolution, obj jcstypes.ObjectDetail, planBld *exec.PlanBuilder, planningHubIDs map[jcstypes.UserSpaceID]bool) db.UpdatingObjectRedundancy {
  583. entry := db.UpdatingObjectRedundancy{
  584. ObjectID: obj.Object.ObjectID,
  585. FileHash: obj.Object.FileHash,
  586. Size: obj.Object.Size,
  587. Redundancy: obj.Object.Redundancy,
  588. }
  589. ft := ioswitch2.NewFromTo()
  590. fromStg := ctx.allUserSpaces[obj.Blocks[0].UserSpaceID].UserSpace
  591. ft.AddFrom(ioswitch2.NewFromShardstore(obj.Object.FileHash, *fromStg, ioswitch2.RawStream()))
  592. for i, f := range solu.rmBlocks {
  593. hasCache := lo.ContainsBy(obj.Blocks, func(b jcstypes.ObjectBlock) bool { return b.UserSpaceID == solu.blockList[i].UserSpaceID }) ||
  594. lo.ContainsBy(obj.PinnedAt, func(n jcstypes.UserSpaceID) bool { return n == solu.blockList[i].UserSpaceID })
  595. willRm := f
  596. if !willRm {
  597. // 如果对象在退火后要保留副本的节点没有副本,则需要在这个节点创建副本
  598. if !hasCache {
  599. toStg := ctx.allUserSpaces[solu.blockList[i].UserSpaceID].UserSpace
  600. ft.AddTo(ioswitch2.NewToShardStore(*toStg, ioswitch2.RawStream(), fmt.Sprintf("%d.0", obj.Object.ObjectID)))
  601. planningHubIDs[solu.blockList[i].UserSpaceID] = true
  602. }
  603. entry.Blocks = append(entry.Blocks, jcstypes.ObjectBlock{
  604. ObjectID: obj.Object.ObjectID,
  605. Index: solu.blockList[i].Index,
  606. UserSpaceID: solu.blockList[i].UserSpaceID,
  607. FileHash: obj.Object.FileHash,
  608. Size: obj.Object.Size,
  609. })
  610. }
  611. }
  612. err := parser.Parse(ft, planBld)
  613. if err != nil {
  614. // TODO 错误处理
  615. }
  616. return entry
  617. }
  618. func (t *ChangeRedundancy) generateSysEventForRepObject(solu annealingSolution, obj jcstypes.ObjectDetail) []datamap.SysEventBody {
  619. var blockChgs []datamap.BlockChange
  620. for i, f := range solu.rmBlocks {
  621. hasCache := lo.ContainsBy(obj.Blocks, func(b jcstypes.ObjectBlock) bool { return b.UserSpaceID == solu.blockList[i].UserSpaceID }) ||
  622. lo.ContainsBy(obj.PinnedAt, func(n jcstypes.UserSpaceID) bool { return n == solu.blockList[i].UserSpaceID })
  623. willRm := f
  624. if !willRm {
  625. // 如果对象在退火后要保留副本的节点没有副本,则需要在这个节点创建副本
  626. if !hasCache {
  627. blockChgs = append(blockChgs, &datamap.BlockChangeClone{
  628. BlockType: datamap.BlockTypeRaw,
  629. SourceUserSpaceID: obj.Blocks[0].UserSpaceID,
  630. TargetUserSpaceID: solu.blockList[i].UserSpaceID,
  631. })
  632. }
  633. } else {
  634. blockChgs = append(blockChgs, &datamap.BlockChangeDeleted{
  635. Index: 0,
  636. UserSpaceID: solu.blockList[i].UserSpaceID,
  637. })
  638. }
  639. }
  640. transEvt := &datamap.BodyBlockTransfer{
  641. ObjectID: obj.Object.ObjectID,
  642. PackageID: obj.Object.PackageID,
  643. BlockChanges: blockChgs,
  644. }
  645. var blockDist []datamap.BlockDistributionObjectInfo
  646. for i, f := range solu.rmBlocks {
  647. if !f {
  648. blockDist = append(blockDist, datamap.BlockDistributionObjectInfo{
  649. BlockType: datamap.BlockTypeRaw,
  650. Index: 0,
  651. UserSpaceID: solu.blockList[i].UserSpaceID,
  652. })
  653. }
  654. }
  655. distEvt := &datamap.BodyBlockDistribution{
  656. ObjectID: obj.Object.ObjectID,
  657. PackageID: obj.Object.PackageID,
  658. Path: obj.Object.Path,
  659. Size: obj.Object.Size,
  660. FileHash: obj.Object.FileHash,
  661. FaultTolerance: solu.disasterTolerance,
  662. Redundancy: solu.spaceCost,
  663. AvgAccessCost: 0, // TODO 计算平均访问代价,从日常访问数据中统计
  664. BlockDistribution: blockDist,
  665. // TODO 不好计算传输量
  666. }
  667. return []datamap.SysEventBody{transEvt, distEvt}
  668. }
  669. func (t *ChangeRedundancy) makePlansForECObject(ctx *changeRedundancyContext, solu annealingSolution, obj jcstypes.ObjectDetail, planBld *exec.PlanBuilder, planningHubIDs map[jcstypes.UserSpaceID]bool) db.UpdatingObjectRedundancy {
  670. entry := db.UpdatingObjectRedundancy{
  671. ObjectID: obj.Object.ObjectID,
  672. FileHash: obj.Object.FileHash,
  673. Size: obj.Object.Size,
  674. Redundancy: obj.Object.Redundancy,
  675. }
  676. reconstrct := make(map[jcstypes.UserSpaceID]*[]int)
  677. for i, f := range solu.rmBlocks {
  678. block := solu.blockList[i]
  679. if !f {
  680. entry.Blocks = append(entry.Blocks, jcstypes.ObjectBlock{
  681. ObjectID: obj.Object.ObjectID,
  682. Index: block.Index,
  683. UserSpaceID: block.UserSpaceID,
  684. FileHash: block.FileHash,
  685. Size: block.Size,
  686. })
  687. // 如果这个块是影子块,那么就要从完整对象里重建这个块
  688. if !block.HasEntity {
  689. re, ok := reconstrct[block.UserSpaceID]
  690. if !ok {
  691. re = &[]int{}
  692. reconstrct[block.UserSpaceID] = re
  693. }
  694. *re = append(*re, block.Index)
  695. }
  696. }
  697. }
  698. ecRed := obj.Object.Redundancy.(*jcstypes.ECRedundancy)
  699. for id, idxs := range reconstrct {
  700. // 依次生成每个节点上的执行计划,因为如果放到一个计划里一起生成,不能保证每个节点上的块用的都是本节点上的副本
  701. ft := ioswitch2.NewFromTo()
  702. ft.ECParam = ecRed
  703. ft.AddFrom(ioswitch2.NewFromShardstore(obj.Object.FileHash, *ctx.allUserSpaces[id].UserSpace, ioswitch2.RawStream()))
  704. for _, i := range *idxs {
  705. ft.AddTo(ioswitch2.NewToShardStore(*ctx.allUserSpaces[id].UserSpace, ioswitch2.ECStream(i), fmt.Sprintf("%d.%d", obj.Object.ObjectID, i)))
  706. }
  707. err := parser.Parse(ft, planBld)
  708. if err != nil {
  709. // TODO 错误处理
  710. continue
  711. }
  712. planningHubIDs[id] = true
  713. }
  714. return entry
  715. }
  716. func (t *ChangeRedundancy) generateSysEventForECObject(solu annealingSolution, obj jcstypes.ObjectDetail) []datamap.SysEventBody {
  717. var blockChgs []datamap.BlockChange
  718. reconstrct := make(map[jcstypes.UserSpaceID]*[]int)
  719. for i, f := range solu.rmBlocks {
  720. block := solu.blockList[i]
  721. if !f {
  722. // 如果这个块是影子块,那么就要从完整对象里重建这个块
  723. if !block.HasEntity {
  724. re, ok := reconstrct[block.UserSpaceID]
  725. if !ok {
  726. re = &[]int{}
  727. reconstrct[block.UserSpaceID] = re
  728. }
  729. *re = append(*re, block.Index)
  730. }
  731. } else {
  732. blockChgs = append(blockChgs, &datamap.BlockChangeDeleted{
  733. Index: block.Index,
  734. UserSpaceID: block.UserSpaceID,
  735. })
  736. }
  737. }
  738. // 由于每一个需要被重建的块都是从同中心的副本里构建出来的,所以对于每一个中心都要产生一个BlockChangeEnDecode
  739. for id, idxs := range reconstrct {
  740. var tarBlocks []datamap.Block
  741. for _, idx := range *idxs {
  742. tarBlocks = append(tarBlocks, datamap.Block{
  743. BlockType: datamap.BlockTypeEC,
  744. Index: idx,
  745. UserSpaceID: id,
  746. })
  747. }
  748. blockChgs = append(blockChgs, &datamap.BlockChangeEnDecode{
  749. SourceBlocks: []datamap.Block{{
  750. BlockType: datamap.BlockTypeRaw,
  751. Index: 0,
  752. UserSpaceID: id, // 影子块的原始对象就在同一个节点上
  753. }},
  754. TargetBlocks: tarBlocks,
  755. // 传输量为0
  756. })
  757. }
  758. transEvt := &datamap.BodyBlockTransfer{
  759. ObjectID: obj.Object.ObjectID,
  760. PackageID: obj.Object.PackageID,
  761. BlockChanges: blockChgs,
  762. }
  763. var blockDist []datamap.BlockDistributionObjectInfo
  764. for i, f := range solu.rmBlocks {
  765. if !f {
  766. blockDist = append(blockDist, datamap.BlockDistributionObjectInfo{
  767. BlockType: datamap.BlockTypeEC,
  768. Index: solu.blockList[i].Index,
  769. UserSpaceID: solu.blockList[i].UserSpaceID,
  770. })
  771. }
  772. }
  773. distEvt := &datamap.BodyBlockDistribution{
  774. ObjectID: obj.Object.ObjectID,
  775. PackageID: obj.Object.PackageID,
  776. Path: obj.Object.Path,
  777. Size: obj.Object.Size,
  778. FileHash: obj.Object.FileHash,
  779. FaultTolerance: solu.disasterTolerance,
  780. Redundancy: solu.spaceCost,
  781. AvgAccessCost: 0, // TODO 计算平均访问代价,从日常访问数据中统计
  782. BlockDistribution: blockDist,
  783. // TODO 不好计算传输量
  784. }
  785. return []datamap.SysEventBody{transEvt, distEvt}
  786. }
  787. func (t *ChangeRedundancy) executePlans(ctx *changeRedundancyContext, planBld *exec.PlanBuilder, planningSpaceIDs map[jcstypes.UserSpaceID]bool, reen *publock.Reentrant) (exec.PlanResult, error) {
  788. for id, _ := range planningSpaceIDs {
  789. reen.UserSpace().Buzy(id)
  790. }
  791. err := reen.Lock()
  792. if err != nil {
  793. return exec.PlanResult{}, fmt.Errorf("locking shard resources: %w", err)
  794. }
  795. wg := sync.WaitGroup{}
  796. // 执行IO计划
  797. var ioSwRets exec.PlanResult
  798. var ioSwErr error
  799. wg.Add(1)
  800. go func() {
  801. defer wg.Done()
  802. execCtx := exec.NewExecContext()
  803. exec.SetValueByType(execCtx, ctx.ticktock.stgPool)
  804. ret, err := planBld.Execute(execCtx).Wait(context.TODO())
  805. if err != nil {
  806. ioSwErr = fmt.Errorf("executing io switch plan: %w", err)
  807. return
  808. }
  809. ioSwRets = ret
  810. }()
  811. wg.Wait()
  812. if ioSwErr != nil {
  813. return exec.PlanResult{}, ioSwErr
  814. }
  815. return ioSwRets, nil
  816. }
  817. func (t *ChangeRedundancy) populateECObjectEntry(entry *db.UpdatingObjectRedundancy, obj jcstypes.ObjectDetail, ioRets exec.PlanResult) {
  818. for i := range entry.Blocks {
  819. if entry.Blocks[i].FileHash != "" {
  820. continue
  821. }
  822. key := fmt.Sprintf("%d.%d", obj.Object.ObjectID, entry.Blocks[i].Index)
  823. // 不应该出现key不存在的情况
  824. r := ioRets.Get(key).(*ops2.FileInfoValue)
  825. entry.Blocks[i].FileHash = r.Hash
  826. entry.Blocks[i].Size = r.Size
  827. }
  828. }

本项目旨在将云际存储公共基础设施化,使个人及企业可低门槛使用高效的云际存储服务(安装开箱即用云际存储客户端即可,无需关注其他组件的部署),同时支持用户灵活便捷定制云际存储的功能细节。