You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

redundancy_shrink.go 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959
  1. package ticktock
  2. import (
  3. "context"
  4. "fmt"
  5. "math"
  6. "math/rand"
  7. "sync"
  8. "github.com/samber/lo"
  9. "gitlink.org.cn/cloudream/common/pkgs/bitmap"
  10. "gitlink.org.cn/cloudream/common/pkgs/ioswitch/exec"
  11. "gitlink.org.cn/cloudream/common/pkgs/logger"
  12. "gitlink.org.cn/cloudream/common/utils/lo2"
  13. "gitlink.org.cn/cloudream/common/utils/math2"
  14. "gitlink.org.cn/cloudream/common/utils/sort2"
  15. "gitlink.org.cn/cloudream/jcs-pub/client/internal/db"
  16. clitypes "gitlink.org.cn/cloudream/jcs-pub/client/types"
  17. "gitlink.org.cn/cloudream/jcs-pub/common/consts"
  18. "gitlink.org.cn/cloudream/jcs-pub/common/models/datamap"
  19. "gitlink.org.cn/cloudream/jcs-pub/common/pkgs/ioswitch2"
  20. "gitlink.org.cn/cloudream/jcs-pub/common/pkgs/ioswitch2/ops2"
  21. "gitlink.org.cn/cloudream/jcs-pub/common/pkgs/ioswitch2/parser"
  22. )
  23. func (t *ChangeRedundancy) doRedundancyShrink(execCtx *changeRedundancyContext, pkg clitypes.PackageDetail, objs []clitypes.ObjectDetail) ([]db.UpdatingObjectRedundancy, []datamap.SysEventBody, error) {
  24. log := logger.WithType[ChangeRedundancy]("TickTock")
  25. var readerStgIDs []clitypes.UserSpaceID
  26. for _, space := range execCtx.allUserSpaces {
  27. // TODO 可以考虑做成配置
  28. if space.AccessAmount >= float64(pkg.ObjectCount/2) {
  29. readerStgIDs = append(readerStgIDs, space.UserSpace.UserSpace.UserSpaceID)
  30. }
  31. }
  32. // 只对ec和rep对象进行处理
  33. var ecObjects []clitypes.ObjectDetail
  34. var repObjects []clitypes.ObjectDetail
  35. for _, obj := range objs {
  36. if _, ok := obj.Object.Redundancy.(*clitypes.ECRedundancy); ok {
  37. ecObjects = append(ecObjects, obj)
  38. } else if _, ok := obj.Object.Redundancy.(*clitypes.RepRedundancy); ok {
  39. repObjects = append(repObjects, obj)
  40. }
  41. }
  42. planBld := exec.NewPlanBuilder()
  43. planningStgIDs := make(map[clitypes.UserSpaceID]bool)
  44. var sysEvents []datamap.SysEventBody
  45. // 对于rep对象,统计出所有对象块分布最多的两个节点,用这两个节点代表所有rep对象块的分布,去进行退火算法
  46. var repObjectsUpdating []db.UpdatingObjectRedundancy
  47. repMostHubIDs := t.summaryRepObjectBlockNodes(repObjects)
  48. solu := t.startAnnealing(execCtx, readerStgIDs, annealingObject{
  49. totalBlockCount: 1,
  50. minBlockCnt: 1,
  51. pinnedAt: repMostHubIDs,
  52. blocks: nil,
  53. })
  54. for _, obj := range repObjects {
  55. repObjectsUpdating = append(repObjectsUpdating, t.makePlansForRepObject(execCtx, solu, obj, planBld, planningStgIDs))
  56. sysEvents = append(sysEvents, t.generateSysEventForRepObject(solu, obj)...)
  57. }
  58. // 对于ec对象,则每个对象单独进行退火算法
  59. var ecObjectsUpdating []db.UpdatingObjectRedundancy
  60. for _, obj := range ecObjects {
  61. ecRed := obj.Object.Redundancy.(*clitypes.ECRedundancy)
  62. solu := t.startAnnealing(execCtx, readerStgIDs, annealingObject{
  63. totalBlockCount: ecRed.N,
  64. minBlockCnt: ecRed.K,
  65. pinnedAt: obj.PinnedAt,
  66. blocks: obj.Blocks,
  67. })
  68. ecObjectsUpdating = append(ecObjectsUpdating, t.makePlansForECObject(execCtx, solu, obj, planBld, planningStgIDs))
  69. sysEvents = append(sysEvents, t.generateSysEventForECObject(solu, obj)...)
  70. }
  71. ioSwRets, err := t.executePlans(execCtx, planBld, planningStgIDs)
  72. if err != nil {
  73. log.Warn(err.Error())
  74. return nil, nil, fmt.Errorf("execute plans: %w", err)
  75. }
  76. // 根据按照方案进行调整的结果,填充更新元数据的命令
  77. for i := range ecObjectsUpdating {
  78. t.populateECObjectEntry(&ecObjectsUpdating[i], ecObjects[i], ioSwRets)
  79. }
  80. return append(repObjectsUpdating, ecObjectsUpdating...), sysEvents, nil
  81. }
  82. func (t *ChangeRedundancy) summaryRepObjectBlockNodes(objs []clitypes.ObjectDetail) []clitypes.UserSpaceID {
  83. type stgBlocks struct {
  84. UserSpaceID clitypes.UserSpaceID
  85. Count int
  86. }
  87. stgBlocksMap := make(map[clitypes.UserSpaceID]*stgBlocks)
  88. for _, obj := range objs {
  89. cacheBlockStgs := make(map[clitypes.UserSpaceID]bool)
  90. for _, block := range obj.Blocks {
  91. if _, ok := stgBlocksMap[block.UserSpaceID]; !ok {
  92. stgBlocksMap[block.UserSpaceID] = &stgBlocks{
  93. UserSpaceID: block.UserSpaceID,
  94. Count: 0,
  95. }
  96. }
  97. stgBlocksMap[block.UserSpaceID].Count++
  98. cacheBlockStgs[block.UserSpaceID] = true
  99. }
  100. for _, hubID := range obj.PinnedAt {
  101. if cacheBlockStgs[hubID] {
  102. continue
  103. }
  104. if _, ok := stgBlocksMap[hubID]; !ok {
  105. stgBlocksMap[hubID] = &stgBlocks{
  106. UserSpaceID: hubID,
  107. Count: 0,
  108. }
  109. }
  110. stgBlocksMap[hubID].Count++
  111. }
  112. }
  113. stgs := lo.Values(stgBlocksMap)
  114. sort2.Sort(stgs, func(left *stgBlocks, right *stgBlocks) int {
  115. return right.Count - left.Count
  116. })
  117. // 只选出块数超过一半的节点,但要保证至少有两个节点
  118. for i := 2; i < len(stgs); i++ {
  119. if stgs[i].Count < len(objs)/2 {
  120. stgs = stgs[:i]
  121. break
  122. }
  123. }
  124. return lo.Map(stgs, func(item *stgBlocks, idx int) clitypes.UserSpaceID { return item.UserSpaceID })
  125. }
  126. type annealingState struct {
  127. ctx *changeRedundancyContext
  128. readerStgIDs []clitypes.UserSpaceID // 近期可能访问此对象的节点
  129. stgsSortedByReader map[clitypes.UserSpaceID][]stgDist // 拥有数据的节点到每个可能访问对象的节点按距离排序
  130. object annealingObject // 进行退火的对象
  131. blockList []objectBlock // 排序后的块分布情况
  132. stgBlockBitmaps map[clitypes.UserSpaceID]*bitmap.Bitmap64 // 用位图的形式表示每一个节点上有哪些块
  133. stgCombTree combinatorialTree // 节点组合树,用于加速计算容灾度
  134. maxScore float64 // 搜索过程中得到过的最大分数
  135. maxScoreRmBlocks []bool // 最大分数对应的删除方案
  136. rmBlocks []bool // 当前删除方案
  137. inversedIndex int // 当前删除方案是从上一次的方案改动哪个flag而来的
  138. lastDisasterTolerance float64 // 上一次方案的容灾度
  139. lastSpaceCost float64 // 上一次方案的冗余度
  140. lastMinAccessCost float64 // 上一次方案的最小访问费用
  141. lastScore float64 // 上一次方案的分数
  142. }
  143. type objectBlock struct {
  144. Index int
  145. UserSpaceID clitypes.UserSpaceID
  146. HasEntity bool // 节点拥有实际的文件数据块
  147. HasShadow bool // 如果节点拥有完整文件数据,那么认为这个节点拥有所有块,这些块被称为影子块
  148. FileHash clitypes.FileHash // 只有在拥有实际文件数据块时,这个字段才有值
  149. Size int64 // 块大小
  150. }
  151. type stgDist struct {
  152. UserSpaceID clitypes.UserSpaceID
  153. Distance float64
  154. }
  155. type combinatorialTree struct {
  156. nodes []combinatorialTreeNode
  157. blocksMaps map[int]bitmap.Bitmap64
  158. stgIDToLocalStgID map[clitypes.UserSpaceID]int
  159. localStgIDToStgID []clitypes.UserSpaceID
  160. }
  161. type annealingObject struct {
  162. totalBlockCount int
  163. minBlockCnt int
  164. pinnedAt []clitypes.UserSpaceID
  165. blocks []clitypes.ObjectBlock
  166. }
  167. const (
  168. iterActionNone = 0
  169. iterActionSkip = 1
  170. iterActionBreak = 2
  171. )
  172. func newCombinatorialTree(stgBlocksMaps map[clitypes.UserSpaceID]*bitmap.Bitmap64) combinatorialTree {
  173. tree := combinatorialTree{
  174. blocksMaps: make(map[int]bitmap.Bitmap64),
  175. stgIDToLocalStgID: make(map[clitypes.UserSpaceID]int),
  176. }
  177. tree.nodes = make([]combinatorialTreeNode, (1 << len(stgBlocksMaps)))
  178. for id, mp := range stgBlocksMaps {
  179. tree.stgIDToLocalStgID[id] = len(tree.localStgIDToStgID)
  180. tree.blocksMaps[len(tree.localStgIDToStgID)] = *mp
  181. tree.localStgIDToStgID = append(tree.localStgIDToStgID, id)
  182. }
  183. tree.nodes[0].localHubID = -1
  184. index := 1
  185. tree.initNode(0, &tree.nodes[0], &index)
  186. return tree
  187. }
  188. func (t *combinatorialTree) initNode(minAvaiLocalHubID int, parent *combinatorialTreeNode, index *int) {
  189. for i := minAvaiLocalHubID; i < len(t.stgIDToLocalStgID); i++ {
  190. curIndex := *index
  191. *index++
  192. bitMp := t.blocksMaps[i]
  193. bitMp.Or(&parent.blocksBitmap)
  194. t.nodes[curIndex] = combinatorialTreeNode{
  195. localHubID: i,
  196. parent: parent,
  197. blocksBitmap: bitMp,
  198. }
  199. t.initNode(i+1, &t.nodes[curIndex], index)
  200. }
  201. }
  202. // 获得索引指定的节点所在的层
  203. func (t *combinatorialTree) GetDepth(index int) int {
  204. depth := 0
  205. // 反复判断节点在哪个子树。从左到右,子树节点的数量呈现8 4 2的变化,由此可以得到每个子树的索引值的范围
  206. subTreeCount := 1 << len(t.stgIDToLocalStgID)
  207. for index > 0 {
  208. if index < subTreeCount {
  209. // 定位到一个子树后,深度+1,然后进入这个子树,使用同样的方法再进行定位。
  210. // 进入子树后需要将索引值-1,因为要去掉子树的根节点
  211. index--
  212. depth++
  213. } else {
  214. // 如果索引值不在这个子树范围内,则将值减去子树的节点数量,
  215. // 这样每一次都可以视为使用同样的逻辑对不同大小的树进行判断。
  216. index -= subTreeCount
  217. }
  218. subTreeCount >>= 1
  219. }
  220. return depth
  221. }
  222. // 更新某一个算力中心节点的块分布位图,同时更新它对应组合树节点的所有子节点。
  223. // 如果更新到某个节点时,已有K个块,那么就不会再更新它的子节点
  224. func (t *combinatorialTree) UpdateBitmap(stgID clitypes.UserSpaceID, mp bitmap.Bitmap64, k int) {
  225. t.blocksMaps[t.stgIDToLocalStgID[stgID]] = mp
  226. // 首先定义两种遍历树节点时的移动方式:
  227. // 1. 竖直移动(深度增加):从一个节点移动到它最左边的子节点。每移动一步,index+1
  228. // 2. 水平移动:从一个节点移动到它右边的兄弟节点。每移动一步,根据它所在的深度,index+8,+4,+2
  229. // LocalID从0开始,将其+1后得到移动步数steps。
  230. // 将移动步数拆成多部分,分配到上述的两种移动方式上,并进行任意组合,且保证第一次为至少进行一次的竖直移动,移动之后的节点都会是同一个计算中心节点。
  231. steps := t.stgIDToLocalStgID[stgID] + 1
  232. for d := 1; d <= steps; d++ {
  233. t.iterCombBits(len(t.stgIDToLocalStgID)-1, steps-d, 0, func(i int) {
  234. index := d + i
  235. node := &t.nodes[index]
  236. newMp := t.blocksMaps[node.localHubID]
  237. newMp.Or(&node.parent.blocksBitmap)
  238. node.blocksBitmap = newMp
  239. if newMp.Weight() >= k {
  240. return
  241. }
  242. t.iterChildren(index, func(index, parentIndex, depth int) int {
  243. curNode := &t.nodes[index]
  244. parentNode := t.nodes[parentIndex]
  245. newMp := t.blocksMaps[curNode.localHubID]
  246. newMp.Or(&parentNode.blocksBitmap)
  247. curNode.blocksBitmap = newMp
  248. if newMp.Weight() >= k {
  249. return iterActionSkip
  250. }
  251. return iterActionNone
  252. })
  253. })
  254. }
  255. }
  256. // 遍历树,找到至少拥有K个块的树节点的最大深度
  257. func (t *combinatorialTree) FindKBlocksMaxDepth(k int) int {
  258. maxDepth := -1
  259. t.iterChildren(0, func(index, parentIndex, depth int) int {
  260. if t.nodes[index].blocksBitmap.Weight() >= k {
  261. if maxDepth < depth {
  262. maxDepth = depth
  263. }
  264. return iterActionSkip
  265. }
  266. // 如果到了叶子节点,还没有找到K个块,那就认为要满足K个块,至少需要再多一个节点,即深度+1。
  267. // 由于遍历时采用的是深度优先的算法,因此遍历到这个叶子节点时,叶子节点再加一个节点的组合已经在前面搜索过,
  268. // 所以用当前叶子节点深度+1来作为当前分支的结果就可以,即使当前情况下增加任意一个节点依然不够K块,
  269. // 可以使用同样的思路去递推到当前叶子节点增加两个块的情况。
  270. if t.nodes[index].localHubID == len(t.stgIDToLocalStgID)-1 {
  271. if maxDepth < depth+1 {
  272. maxDepth = depth + 1
  273. }
  274. }
  275. return iterActionNone
  276. })
  277. if maxDepth == -1 || maxDepth > len(t.stgIDToLocalStgID) {
  278. return len(t.stgIDToLocalStgID)
  279. }
  280. return maxDepth
  281. }
  282. func (t *combinatorialTree) iterCombBits(width int, count int, offset int, callback func(int)) {
  283. if count == 0 {
  284. callback(offset)
  285. return
  286. }
  287. for b := width; b >= count; b-- {
  288. t.iterCombBits(b-1, count-1, offset+(1<<b), callback)
  289. }
  290. }
  291. func (t *combinatorialTree) iterChildren(index int, do func(index int, parentIndex int, depth int) int) {
  292. curNode := &t.nodes[index]
  293. childIndex := index + 1
  294. curDepth := t.GetDepth(index)
  295. childCounts := len(t.stgIDToLocalStgID) - 1 - curNode.localHubID
  296. if childCounts == 0 {
  297. return
  298. }
  299. childTreeNodeCnt := 1 << (childCounts - 1)
  300. for c := 0; c < childCounts; c++ {
  301. act := t.itering(childIndex, index, curDepth+1, do)
  302. if act == iterActionBreak {
  303. return
  304. }
  305. childIndex += childTreeNodeCnt
  306. childTreeNodeCnt >>= 1
  307. }
  308. }
  309. func (t *combinatorialTree) itering(index int, parentIndex int, depth int, do func(index int, parentIndex int, depth int) int) int {
  310. act := do(index, parentIndex, depth)
  311. if act == iterActionBreak {
  312. return act
  313. }
  314. if act == iterActionSkip {
  315. return iterActionNone
  316. }
  317. curNode := &t.nodes[index]
  318. childIndex := index + 1
  319. childCounts := len(t.stgIDToLocalStgID) - 1 - curNode.localHubID
  320. if childCounts == 0 {
  321. return iterActionNone
  322. }
  323. childTreeNodeCnt := 1 << (childCounts - 1)
  324. for c := 0; c < childCounts; c++ {
  325. act = t.itering(childIndex, index, depth+1, do)
  326. if act == iterActionBreak {
  327. return act
  328. }
  329. childIndex += childTreeNodeCnt
  330. childTreeNodeCnt >>= 1
  331. }
  332. return iterActionNone
  333. }
  334. type combinatorialTreeNode struct {
  335. localHubID int
  336. parent *combinatorialTreeNode
  337. blocksBitmap bitmap.Bitmap64 // 选择了这个中心之后,所有中心一共包含多少种块
  338. }
  339. type annealingSolution struct {
  340. blockList []objectBlock // 所有节点的块分布情况
  341. rmBlocks []bool // 要删除哪些块
  342. disasterTolerance float64 // 本方案的容灾度
  343. spaceCost float64 // 本方案的冗余度
  344. minAccessCost float64 // 本方案的最小访问费用
  345. }
  346. func (t *ChangeRedundancy) startAnnealing(ctx *changeRedundancyContext, readerStgIDs []clitypes.UserSpaceID, object annealingObject) annealingSolution {
  347. state := &annealingState{
  348. ctx: ctx,
  349. readerStgIDs: readerStgIDs,
  350. stgsSortedByReader: make(map[clitypes.UserSpaceID][]stgDist),
  351. object: object,
  352. stgBlockBitmaps: make(map[clitypes.UserSpaceID]*bitmap.Bitmap64),
  353. }
  354. t.initBlockList(state)
  355. if state.blockList == nil {
  356. return annealingSolution{}
  357. }
  358. t.initNodeBlockBitmap(state)
  359. t.sortNodeByReaderDistance(state)
  360. state.rmBlocks = make([]bool, len(state.blockList))
  361. state.inversedIndex = -1
  362. state.stgCombTree = newCombinatorialTree(state.stgBlockBitmaps)
  363. state.lastScore = t.calcScore(state)
  364. state.maxScore = state.lastScore
  365. state.maxScoreRmBlocks = lo2.ArrayClone(state.rmBlocks)
  366. // 模拟退火算法的温度
  367. curTemp := state.lastScore
  368. // 结束温度
  369. finalTemp := curTemp * 0.2
  370. // 冷却率
  371. coolingRate := 0.95
  372. for curTemp > finalTemp {
  373. state.inversedIndex = rand.Intn(len(state.rmBlocks))
  374. block := state.blockList[state.inversedIndex]
  375. state.rmBlocks[state.inversedIndex] = !state.rmBlocks[state.inversedIndex]
  376. state.stgBlockBitmaps[block.UserSpaceID].Set(block.Index, !state.rmBlocks[state.inversedIndex])
  377. state.stgCombTree.UpdateBitmap(block.UserSpaceID, *state.stgBlockBitmaps[block.UserSpaceID], state.object.minBlockCnt)
  378. curScore := t.calcScore(state)
  379. dScore := curScore - state.lastScore
  380. // 如果新方案比旧方案得分低,且没有要求强制接受新方案,那么就将变化改回去
  381. if curScore == 0 || (dScore < 0 && !t.alwaysAccept(curTemp, dScore, coolingRate)) {
  382. state.rmBlocks[state.inversedIndex] = !state.rmBlocks[state.inversedIndex]
  383. state.stgBlockBitmaps[block.UserSpaceID].Set(block.Index, !state.rmBlocks[state.inversedIndex])
  384. state.stgCombTree.UpdateBitmap(block.UserSpaceID, *state.stgBlockBitmaps[block.UserSpaceID], state.object.minBlockCnt)
  385. // fmt.Printf("\n")
  386. } else {
  387. // fmt.Printf(" accept!\n")
  388. state.lastScore = curScore
  389. if state.maxScore < curScore {
  390. state.maxScore = state.lastScore
  391. state.maxScoreRmBlocks = lo2.ArrayClone(state.rmBlocks)
  392. }
  393. }
  394. curTemp *= coolingRate
  395. }
  396. // fmt.Printf("final: %v\n", state.maxScoreRmBlocks)
  397. return annealingSolution{
  398. blockList: state.blockList,
  399. rmBlocks: state.maxScoreRmBlocks,
  400. disasterTolerance: state.lastDisasterTolerance,
  401. spaceCost: state.lastSpaceCost,
  402. minAccessCost: state.lastMinAccessCost,
  403. }
  404. }
  405. func (t *ChangeRedundancy) initBlockList(ctx *annealingState) {
  406. blocksMap := make(map[clitypes.UserSpaceID][]objectBlock)
  407. // 先生成所有的影子块
  408. for _, pinned := range ctx.object.pinnedAt {
  409. blocks := make([]objectBlock, 0, ctx.object.totalBlockCount)
  410. for i := 0; i < ctx.object.totalBlockCount; i++ {
  411. blocks = append(blocks, objectBlock{
  412. Index: i,
  413. UserSpaceID: pinned,
  414. HasShadow: true,
  415. })
  416. }
  417. blocksMap[pinned] = blocks
  418. }
  419. // 再填充实际块
  420. for _, b := range ctx.object.blocks {
  421. blocks := blocksMap[b.UserSpaceID]
  422. has := false
  423. for i := range blocks {
  424. if blocks[i].Index == b.Index {
  425. blocks[i].HasEntity = true
  426. blocks[i].FileHash = b.FileHash
  427. has = true
  428. break
  429. }
  430. }
  431. if has {
  432. continue
  433. }
  434. blocks = append(blocks, objectBlock{
  435. Index: b.Index,
  436. UserSpaceID: b.UserSpaceID,
  437. HasEntity: true,
  438. FileHash: b.FileHash,
  439. Size: b.Size,
  440. })
  441. blocksMap[b.UserSpaceID] = blocks
  442. }
  443. var sortedBlocks []objectBlock
  444. for _, bs := range blocksMap {
  445. sortedBlocks = append(sortedBlocks, bs...)
  446. }
  447. sortedBlocks = sort2.Sort(sortedBlocks, func(left objectBlock, right objectBlock) int {
  448. d := left.UserSpaceID - right.UserSpaceID
  449. if d != 0 {
  450. return int(d)
  451. }
  452. return left.Index - right.Index
  453. })
  454. ctx.blockList = sortedBlocks
  455. }
  456. func (t *ChangeRedundancy) initNodeBlockBitmap(state *annealingState) {
  457. for _, b := range state.blockList {
  458. mp, ok := state.stgBlockBitmaps[b.UserSpaceID]
  459. if !ok {
  460. nb := bitmap.Bitmap64(0)
  461. mp = &nb
  462. state.stgBlockBitmaps[b.UserSpaceID] = mp
  463. }
  464. mp.Set(b.Index, true)
  465. }
  466. }
  467. func (t *ChangeRedundancy) sortNodeByReaderDistance(state *annealingState) {
  468. for _, r := range state.readerStgIDs {
  469. var nodeDists []stgDist
  470. for n := range state.stgBlockBitmaps {
  471. if r == n {
  472. // 同节点时距离视为0.1
  473. nodeDists = append(nodeDists, stgDist{
  474. UserSpaceID: n,
  475. Distance: consts.StorageDistanceSameStorage,
  476. })
  477. } else if state.ctx.allUserSpaces[r].UserSpace.MasterHub.LocationID == state.ctx.allUserSpaces[n].UserSpace.MasterHub.LocationID {
  478. // 同地区时距离视为1
  479. nodeDists = append(nodeDists, stgDist{
  480. UserSpaceID: n,
  481. Distance: consts.StorageDistanceSameLocation,
  482. })
  483. } else {
  484. // 不同地区时距离视为5
  485. nodeDists = append(nodeDists, stgDist{
  486. UserSpaceID: n,
  487. Distance: consts.StorageDistanceOther,
  488. })
  489. }
  490. }
  491. state.stgsSortedByReader[r] = sort2.Sort(nodeDists, func(left, right stgDist) int { return sort2.Cmp(left.Distance, right.Distance) })
  492. }
  493. }
  494. func (t *ChangeRedundancy) calcScore(state *annealingState) float64 {
  495. dt := t.calcDisasterTolerance(state)
  496. ac := t.calcMinAccessCost(state)
  497. sc := t.calcSpaceCost(state)
  498. state.lastDisasterTolerance = dt
  499. state.lastMinAccessCost = ac
  500. state.lastSpaceCost = sc
  501. dtSc := 1.0
  502. if dt < 1 {
  503. dtSc = 0
  504. } else if dt >= 2 {
  505. dtSc = 1.5
  506. }
  507. newSc := 0.0
  508. if dt == 0 || ac == 0 {
  509. newSc = 0
  510. } else {
  511. newSc = dtSc / (sc * ac)
  512. }
  513. // fmt.Printf("solu: %v, cur: %v, dt: %v, ac: %v, sc: %v \n", state.rmBlocks, newSc, dt, ac, sc)
  514. return newSc
  515. }
  516. // 计算容灾度
  517. func (t *ChangeRedundancy) calcDisasterTolerance(state *annealingState) float64 {
  518. if state.inversedIndex != -1 {
  519. node := state.blockList[state.inversedIndex]
  520. state.stgCombTree.UpdateBitmap(node.UserSpaceID, *state.stgBlockBitmaps[node.UserSpaceID], state.object.minBlockCnt)
  521. }
  522. return float64(len(state.stgBlockBitmaps) - state.stgCombTree.FindKBlocksMaxDepth(state.object.minBlockCnt))
  523. }
  524. // 计算最小访问数据的代价
  525. func (t *ChangeRedundancy) calcMinAccessCost(state *annealingState) float64 {
  526. cost := math.MaxFloat64
  527. for _, reader := range state.readerStgIDs {
  528. tarNodes := state.stgsSortedByReader[reader]
  529. gotBlocks := bitmap.Bitmap64(0)
  530. thisCost := 0.0
  531. for _, tar := range tarNodes {
  532. tarNodeMp := state.stgBlockBitmaps[tar.UserSpaceID]
  533. // 只需要从目的节点上获得缺少的块
  534. curWeigth := gotBlocks.Weight()
  535. // 下面的if会在拿到k个块之后跳出循环,所以or多了块也没关系
  536. gotBlocks.Or(tarNodeMp)
  537. // 但是算读取块的消耗时,不能多算,最多算读了k个块的消耗
  538. willGetBlocks := math2.Min(gotBlocks.Weight()-curWeigth, state.object.minBlockCnt-curWeigth)
  539. thisCost += float64(willGetBlocks) * float64(tar.Distance)
  540. if gotBlocks.Weight() >= state.object.minBlockCnt {
  541. break
  542. }
  543. }
  544. if gotBlocks.Weight() >= state.object.minBlockCnt {
  545. cost = math.Min(cost, thisCost)
  546. }
  547. }
  548. return cost
  549. }
  550. // 计算冗余度
  551. func (t *ChangeRedundancy) calcSpaceCost(ctx *annealingState) float64 {
  552. blockCount := 0
  553. for i, b := range ctx.blockList {
  554. if ctx.rmBlocks[i] {
  555. continue
  556. }
  557. if b.HasEntity {
  558. blockCount++
  559. }
  560. if b.HasShadow {
  561. blockCount++
  562. }
  563. }
  564. // 所有算力中心上拥有的块的总数 / 一个对象被分成了几个块
  565. return float64(blockCount) / float64(ctx.object.minBlockCnt)
  566. }
  567. // 如果新方案得分比旧方案小,那么在一定概率内也接受新方案
  568. func (t *ChangeRedundancy) alwaysAccept(curTemp float64, dScore float64, coolingRate float64) bool {
  569. v := math.Exp(dScore / curTemp / coolingRate)
  570. // fmt.Printf(" -- chance: %v, temp: %v", v, curTemp)
  571. return v > rand.Float64()
  572. }
  573. func (t *ChangeRedundancy) makePlansForRepObject(ctx *changeRedundancyContext, solu annealingSolution, obj clitypes.ObjectDetail, planBld *exec.PlanBuilder, planningHubIDs map[clitypes.UserSpaceID]bool) db.UpdatingObjectRedundancy {
  574. entry := db.UpdatingObjectRedundancy{
  575. ObjectID: obj.Object.ObjectID,
  576. FileHash: obj.Object.FileHash,
  577. Size: obj.Object.Size,
  578. Redundancy: obj.Object.Redundancy,
  579. }
  580. ft := ioswitch2.NewFromTo()
  581. fromStg := ctx.allUserSpaces[obj.Blocks[0].UserSpaceID].UserSpace
  582. ft.AddFrom(ioswitch2.NewFromShardstore(obj.Object.FileHash, *fromStg.MasterHub, *fromStg, ioswitch2.RawStream()))
  583. for i, f := range solu.rmBlocks {
  584. hasCache := lo.ContainsBy(obj.Blocks, func(b clitypes.ObjectBlock) bool { return b.UserSpaceID == solu.blockList[i].UserSpaceID }) ||
  585. lo.ContainsBy(obj.PinnedAt, func(n clitypes.UserSpaceID) bool { return n == solu.blockList[i].UserSpaceID })
  586. willRm := f
  587. if !willRm {
  588. // 如果对象在退火后要保留副本的节点没有副本,则需要在这个节点创建副本
  589. if !hasCache {
  590. toStg := ctx.allUserSpaces[solu.blockList[i].UserSpaceID].UserSpace
  591. ft.AddTo(ioswitch2.NewToShardStore(*toStg.MasterHub, *toStg, ioswitch2.RawStream(), fmt.Sprintf("%d.0", obj.Object.ObjectID)))
  592. planningHubIDs[solu.blockList[i].UserSpaceID] = true
  593. }
  594. entry.Blocks = append(entry.Blocks, clitypes.ObjectBlock{
  595. ObjectID: obj.Object.ObjectID,
  596. Index: solu.blockList[i].Index,
  597. UserSpaceID: solu.blockList[i].UserSpaceID,
  598. FileHash: obj.Object.FileHash,
  599. Size: solu.blockList[i].Size,
  600. })
  601. }
  602. }
  603. err := parser.Parse(ft, planBld)
  604. if err != nil {
  605. // TODO 错误处理
  606. }
  607. return entry
  608. }
  609. func (t *ChangeRedundancy) generateSysEventForRepObject(solu annealingSolution, obj clitypes.ObjectDetail) []datamap.SysEventBody {
  610. var blockChgs []datamap.BlockChange
  611. for i, f := range solu.rmBlocks {
  612. hasCache := lo.ContainsBy(obj.Blocks, func(b clitypes.ObjectBlock) bool { return b.UserSpaceID == solu.blockList[i].UserSpaceID }) ||
  613. lo.ContainsBy(obj.PinnedAt, func(n clitypes.UserSpaceID) bool { return n == solu.blockList[i].UserSpaceID })
  614. willRm := f
  615. if !willRm {
  616. // 如果对象在退火后要保留副本的节点没有副本,则需要在这个节点创建副本
  617. if !hasCache {
  618. blockChgs = append(blockChgs, &datamap.BlockChangeClone{
  619. BlockType: datamap.BlockTypeRaw,
  620. SourceUserSpaceID: obj.Blocks[0].UserSpaceID,
  621. TargetUserSpaceID: solu.blockList[i].UserSpaceID,
  622. })
  623. }
  624. } else {
  625. blockChgs = append(blockChgs, &datamap.BlockChangeDeleted{
  626. Index: 0,
  627. UserSpaceID: solu.blockList[i].UserSpaceID,
  628. })
  629. }
  630. }
  631. transEvt := &datamap.BodyBlockTransfer{
  632. ObjectID: obj.Object.ObjectID,
  633. PackageID: obj.Object.PackageID,
  634. BlockChanges: blockChgs,
  635. }
  636. var blockDist []datamap.BlockDistributionObjectInfo
  637. for i, f := range solu.rmBlocks {
  638. if !f {
  639. blockDist = append(blockDist, datamap.BlockDistributionObjectInfo{
  640. BlockType: datamap.BlockTypeRaw,
  641. Index: 0,
  642. UserSpaceID: solu.blockList[i].UserSpaceID,
  643. })
  644. }
  645. }
  646. distEvt := &datamap.BodyBlockDistribution{
  647. ObjectID: obj.Object.ObjectID,
  648. PackageID: obj.Object.PackageID,
  649. Path: obj.Object.Path,
  650. Size: obj.Object.Size,
  651. FileHash: obj.Object.FileHash,
  652. FaultTolerance: solu.disasterTolerance,
  653. Redundancy: solu.spaceCost,
  654. AvgAccessCost: 0, // TODO 计算平均访问代价,从日常访问数据中统计
  655. BlockDistribution: blockDist,
  656. // TODO 不好计算传输量
  657. }
  658. return []datamap.SysEventBody{transEvt, distEvt}
  659. }
  660. func (t *ChangeRedundancy) makePlansForECObject(ctx *changeRedundancyContext, solu annealingSolution, obj clitypes.ObjectDetail, planBld *exec.PlanBuilder, planningHubIDs map[clitypes.UserSpaceID]bool) db.UpdatingObjectRedundancy {
  661. entry := db.UpdatingObjectRedundancy{
  662. ObjectID: obj.Object.ObjectID,
  663. FileHash: obj.Object.FileHash,
  664. Size: obj.Object.Size,
  665. Redundancy: obj.Object.Redundancy,
  666. }
  667. reconstrct := make(map[clitypes.UserSpaceID]*[]int)
  668. for i, f := range solu.rmBlocks {
  669. block := solu.blockList[i]
  670. if !f {
  671. entry.Blocks = append(entry.Blocks, clitypes.ObjectBlock{
  672. ObjectID: obj.Object.ObjectID,
  673. Index: block.Index,
  674. UserSpaceID: block.UserSpaceID,
  675. FileHash: block.FileHash,
  676. Size: block.Size,
  677. })
  678. // 如果这个块是影子块,那么就要从完整对象里重建这个块
  679. if !block.HasEntity {
  680. re, ok := reconstrct[block.UserSpaceID]
  681. if !ok {
  682. re = &[]int{}
  683. reconstrct[block.UserSpaceID] = re
  684. }
  685. *re = append(*re, block.Index)
  686. }
  687. }
  688. }
  689. ecRed := obj.Object.Redundancy.(*clitypes.ECRedundancy)
  690. for id, idxs := range reconstrct {
  691. // 依次生成每个节点上的执行计划,因为如果放到一个计划里一起生成,不能保证每个节点上的块用的都是本节点上的副本
  692. ft := ioswitch2.NewFromTo()
  693. ft.ECParam = ecRed
  694. ft.AddFrom(ioswitch2.NewFromShardstore(obj.Object.FileHash, *ctx.allUserSpaces[id].UserSpace.MasterHub, *ctx.allUserSpaces[id].UserSpace, ioswitch2.RawStream()))
  695. for _, i := range *idxs {
  696. ft.AddTo(ioswitch2.NewToShardStore(*ctx.allUserSpaces[id].UserSpace.MasterHub, *ctx.allUserSpaces[id].UserSpace, ioswitch2.ECStream(i), fmt.Sprintf("%d.%d", obj.Object.ObjectID, i)))
  697. }
  698. err := parser.Parse(ft, planBld)
  699. if err != nil {
  700. // TODO 错误处理
  701. continue
  702. }
  703. planningHubIDs[id] = true
  704. }
  705. return entry
  706. }
  707. func (t *ChangeRedundancy) generateSysEventForECObject(solu annealingSolution, obj clitypes.ObjectDetail) []datamap.SysEventBody {
  708. var blockChgs []datamap.BlockChange
  709. reconstrct := make(map[clitypes.UserSpaceID]*[]int)
  710. for i, f := range solu.rmBlocks {
  711. block := solu.blockList[i]
  712. if !f {
  713. // 如果这个块是影子块,那么就要从完整对象里重建这个块
  714. if !block.HasEntity {
  715. re, ok := reconstrct[block.UserSpaceID]
  716. if !ok {
  717. re = &[]int{}
  718. reconstrct[block.UserSpaceID] = re
  719. }
  720. *re = append(*re, block.Index)
  721. }
  722. } else {
  723. blockChgs = append(blockChgs, &datamap.BlockChangeDeleted{
  724. Index: block.Index,
  725. UserSpaceID: block.UserSpaceID,
  726. })
  727. }
  728. }
  729. // 由于每一个需要被重建的块都是从同中心的副本里构建出来的,所以对于每一个中心都要产生一个BlockChangeEnDecode
  730. for id, idxs := range reconstrct {
  731. var tarBlocks []datamap.Block
  732. for _, idx := range *idxs {
  733. tarBlocks = append(tarBlocks, datamap.Block{
  734. BlockType: datamap.BlockTypeEC,
  735. Index: idx,
  736. UserSpaceID: id,
  737. })
  738. }
  739. blockChgs = append(blockChgs, &datamap.BlockChangeEnDecode{
  740. SourceBlocks: []datamap.Block{{
  741. BlockType: datamap.BlockTypeRaw,
  742. Index: 0,
  743. UserSpaceID: id, // 影子块的原始对象就在同一个节点上
  744. }},
  745. TargetBlocks: tarBlocks,
  746. // 传输量为0
  747. })
  748. }
  749. transEvt := &datamap.BodyBlockTransfer{
  750. ObjectID: obj.Object.ObjectID,
  751. PackageID: obj.Object.PackageID,
  752. BlockChanges: blockChgs,
  753. }
  754. var blockDist []datamap.BlockDistributionObjectInfo
  755. for i, f := range solu.rmBlocks {
  756. if !f {
  757. blockDist = append(blockDist, datamap.BlockDistributionObjectInfo{
  758. BlockType: datamap.BlockTypeEC,
  759. Index: solu.blockList[i].Index,
  760. UserSpaceID: solu.blockList[i].UserSpaceID,
  761. })
  762. }
  763. }
  764. distEvt := &datamap.BodyBlockDistribution{
  765. ObjectID: obj.Object.ObjectID,
  766. PackageID: obj.Object.PackageID,
  767. Path: obj.Object.Path,
  768. Size: obj.Object.Size,
  769. FileHash: obj.Object.FileHash,
  770. FaultTolerance: solu.disasterTolerance,
  771. Redundancy: solu.spaceCost,
  772. AvgAccessCost: 0, // TODO 计算平均访问代价,从日常访问数据中统计
  773. BlockDistribution: blockDist,
  774. // TODO 不好计算传输量
  775. }
  776. return []datamap.SysEventBody{transEvt, distEvt}
  777. }
  778. func (t *ChangeRedundancy) executePlans(ctx *changeRedundancyContext, planBld *exec.PlanBuilder, planningStgIDs map[clitypes.UserSpaceID]bool) (map[string]exec.VarValue, error) {
  779. // TODO 统一加锁,有重复也没关系
  780. // lockBld := reqbuilder.NewBuilder()
  781. // for id := range planningStgIDs {
  782. // lockBld.Shard().Buzy(id)
  783. // }
  784. // lock, err := lockBld.MutexLock(ctx.Args.DistLock)
  785. // if err != nil {
  786. // return nil, fmt.Errorf("acquiring distlock: %w", err)
  787. // }
  788. // defer lock.Unlock()
  789. wg := sync.WaitGroup{}
  790. // 执行IO计划
  791. var ioSwRets map[string]exec.VarValue
  792. var ioSwErr error
  793. wg.Add(1)
  794. go func() {
  795. defer wg.Done()
  796. execCtx := exec.NewExecContext()
  797. exec.SetValueByType(execCtx, ctx.ticktock.stgPool)
  798. ret, err := planBld.Execute(execCtx).Wait(context.TODO())
  799. if err != nil {
  800. ioSwErr = fmt.Errorf("executing io switch plan: %w", err)
  801. return
  802. }
  803. ioSwRets = ret
  804. }()
  805. wg.Wait()
  806. if ioSwErr != nil {
  807. return nil, ioSwErr
  808. }
  809. return ioSwRets, nil
  810. }
  811. func (t *ChangeRedundancy) populateECObjectEntry(entry *db.UpdatingObjectRedundancy, obj clitypes.ObjectDetail, ioRets map[string]exec.VarValue) {
  812. for i := range entry.Blocks {
  813. if entry.Blocks[i].FileHash != "" {
  814. continue
  815. }
  816. key := fmt.Sprintf("%d.%d", obj.Object.ObjectID, entry.Blocks[i].Index)
  817. // 不应该出现key不存在的情况
  818. r := ioRets[key].(*ops2.ShardInfoValue)
  819. entry.Blocks[i].FileHash = r.Hash
  820. entry.Blocks[i].Size = r.Size
  821. }
  822. }

本项目旨在将云际存储公共基础设施化,使个人及企业可低门槛使用高效的云际存储服务(安装开箱即用云际存储客户端即可,无需关注其他组件的部署),同时支持用户灵活便捷定制云际存储的功能细节。