Browse Source

bi的数据集和算法上传“

master
zzysz@qq.com 2 months ago
parent
commit
ddb494a0ed
2 changed files with 185 additions and 0 deletions
  1. BIN
      bi/cifar10_cnn_3v_biv100/cifar-10-binary.tar.gz
  2. +185
    -0
      bi/cifar10_cnn_3v_biv100/cnn_3v_cifar10_tar_500epo_octopus.py

BIN
bi/cifar10_cnn_3v_biv100/cifar-10-binary.tar.gz View File


+ 185
- 0
bi/cifar10_cnn_3v_biv100/cnn_3v_cifar10_tar_500epo_octopus.py View File

@@ -0,0 +1,185 @@
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import tarfile

# 检查 NPU 是否可用
def get_device():
if torch.cuda.is_available():
device = torch.device("cuda")
print("Using NVIDIA GPU (CUDA)")
else:
device = torch.device("cpu")
print("Using CPU")
return device


# 定义 3 层卷积神经网络
class ThreeLayerCNN(nn.Module):
def __init__(self):
super(ThreeLayerCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.flatten = nn.Flatten()
self.fc1 = nn.LazyLinear(256)
self.fc2 = nn.Linear(256, 10)
self.dropout = nn.Dropout(0.5)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.flatten(x)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x


# 数据预处理
def get_transform():
return transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)


# 解压数据集
def extract_dataset(data_tar_path, extract_path):
if os.path.exists(extract_path) and check_dataset_files(extract_path):
print("数据集已解压,无需重复解压")
return True # 直接返回,不解压
if os.path.exists(data_tar_path):
try:
os.makedirs(extract_path, exist_ok=True)
with tarfile.open(data_tar_path, "r:gz") as tar:
tar.extractall(path=extract_path)
print("数据集解压成功")
return True
except Exception as e:
print(f"解压数据集时出错: {e}")
return False


# 检查数据集文件是否完整
def check_dataset_files(extract_path):
data_files = ["train", "test", "meta"]
for file in data_files:
file_path = os.path.join(extract_path, "cifar-10-python", file)
if not os.path.exists(file_path):
return False
return True


# 加载数据集
def load_datasets(data_tar_path, extract_path, transform):
# 如果 `train, test, meta` 不存在,则尝试解压
if not check_dataset_files(extract_path):
if os.path.exists(data_tar_path):
print("数据集未解压,正在解压...")
if not extract_dataset(data_tar_path, extract_path):
raise RuntimeError(f"数据集解压失败,请检查 {data_tar_path}")
else:
raise FileNotFoundError(f"数据集文件不完整,且 {data_tar_path} 也不存在,无法解压")

train_dataset = datasets.CIFAR10(
root=extract_path, train=True, download=False, transform=transform
)
test_dataset = datasets.CIFAR10(
root=extract_path, train=False, download=False, transform=transform
)
return train_dataset, test_dataset


# 训练函数
def train(model, train_loader, criterion, optimizer, device, epochs=3):
model.train()
for epoch in range(epochs):
running_loss = 0.0
for i, (inputs, labels) in enumerate(train_loader):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

running_loss += loss.item()
if i % 100 == 99:
print(
f"Epoch [{epoch + 1}/{epochs}], Step [{i + 1}/{len(train_loader)}], Loss: {running_loss / 100:.4f}"
)
running_loss = 0.0


# 测试函数
def test(model, test_loader, device):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Accuracy of the model on the test images: {100 * correct / total:.2f}%")


# 保存模型
def save_model(model, model_save_path):
model_dir = os.path.dirname(model_save_path)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
torch.save(model.state_dict(), model_save_path)


# 主函数
def main():
# 获取设备
device = get_device()

# 数据预处理
transform = get_transform()

# 数据集路径
data_tar_path = "/userhome/dataset/5/submissionScript/cifar-10-python.tar.gz"
extract_path = "./data"

# 加载数据集
train_dataset, test_dataset = load_datasets(data_tar_path, extract_path, transform)

# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

# 初始化模型
model = ThreeLayerCNN().to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 开始训练
train(model, train_loader, criterion, optimizer, device, epochs=500)

# 进行测试
test(model, test_loader, device)

# 保存模型
model_save_path = (
"/model/three_layer_cnn_cifar10_500epo_octopus.pth"
)
save_model(model, model_save_path)


if __name__ == "__main__":
main()

Loading…
Cancel
Save