|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_initializer_fuzz """
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Model
-
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self, in_str):
- a, b, c, d, e, f, g, h = in_str.strip().split()
- a = int(a)
- b = int(b)
- c = int(b)
- d = int(b)
- e = int(b)
- f = int(b)
- g = int(b)
- h = int(b)
-
- super(Net, self).__init__()
- self.conv = nn.Conv2d(a, b, c, pad_mode="valid")
- self.bn = nn.BatchNorm2d(d)
- self.relu = nn.ReLU()
- self.flatten = nn.Flatten()
- self.fc = nn.Dense(e * f * g, h)
-
- def construct(self, x):
- x = self.conv(x)
- x = self.bn(x)
- x = self.relu(x)
- x = self.flatten(x)
- out = self.fc(x)
- return out
-
-
- def test_shape_error():
- """ for fuzz test"""
- in_str = "3 22222222222222222222222222264 3 64 64 222 222 3"
- with pytest.raises(ValueError):
- Net(in_str)
-
-
- class LeNet5(nn.Cell):
- """ LeNet5 definition """
-
- def __init__(self, in_str):
- super(LeNet5, self).__init__()
-
- a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15 = in_str.strip().split()
- a1 = int(a1)
- a2 = int(a2)
- a3 = int(a3)
- a4 = int(a4)
- a5 = int(a5)
- a6 = int(a6)
- a7 = int(a7)
- a8 = int(a8)
- a9 = int(a9)
- a10 = int(a10)
- a11 = int(a11)
- a12 = int(a12)
- a13 = int(a13)
- a14 = int(a14)
- a15 = int(a15)
-
- self.conv1 = nn.Conv2d(a1, a2, a3, pad_mode="valid")
- self.conv2 = nn.Conv2d(a4, a5, a6, pad_mode="valid")
- self.fc1 = nn.Dense(a7 * a8 * a9, a10)
- self.fc2 = nn.Dense(a11, a12)
- self.fc3 = nn.Dense(a13, a14)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=a15)
- self.flatten = nn.Flatten()
-
- def construct(self, x):
- x = self.max_pool2d(self.relu(self.conv1(x)))
- x = self.max_pool2d(self.relu(self.conv2(x)))
- x = self.flatten(x)
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- x = self.fc3(x)
- return x
-
-
- def test_shape_error_2():
- """ for fuzz test"""
- in_str = "3 6 5 6 -6 5 16 5 5 120 120 84 84 3 2"
- with pytest.raises(ValueError):
- net = LeNet5(in_str) # neural network
- Model(net)
|