|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ######################## train lenet example ########################
- train lenet and get network model files(.ckpt) :
- python train.py --data_path /YourDataPath
- """
-
- import os
- import argparse
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.train.quant import quant
- from src.dataset import create_dataset
- from src.config import mnist_cfg as cfg
- from src.lenet_fusion import LeNet5 as LeNet5Fusion
-
- parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
- parser.add_argument('--device_target', type=str, default="Ascend",
- choices=['Ascend', 'GPU', 'CPU'],
- help='device where the code will be implemented (default: Ascend)')
- parser.add_argument('--data_path', type=str, default="./MNIST_Data",
- help='path where the dataset is saved')
- parser.add_argument('--ckpt_path', type=str, default="",
- help='if mode is test, must provide path where the trained ckpt file')
- parser.add_argument('--dataset_sink_mode', type=bool, default=True,
- help='dataset_sink_mode is False or True')
- args = parser.parse_args()
-
- if __name__ == "__main__":
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- ds_train = create_dataset(os.path.join(args.data_path, "train"), cfg.batch_size, cfg.epoch_size)
- step_size = ds_train.get_dataset_size()
-
- # define fusion network
- network = LeNet5Fusion(cfg.num_classes)
- # load quantization aware network checkpoint
- param_dict = load_checkpoint(args.ckpt_path, network.type)
- load_param_into_net(network, param_dict)
- # convert fusion network to quantization aware network
- network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000)
-
- # define network loss
- net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
- # define network optimization
- net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
-
- # call back and monitor
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
- config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size * step_size,
- keep_checkpoint_max=cfg.keep_checkpoint_max,
- model_type="quant")
- ckpt_callback = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ckpt)
-
- # define model
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
-
- print("============== Starting Training ==============")
- model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpt_callback, LossMonitor()],
- dataset_sink_mode=args.dataset_sink_mode)
- print("============== End Training ==============")
|