|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing the rescale op in DE
- """
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as vision
- from mindspore import log as logger
- from util import visualize_image, diff_mse, save_and_check_md5
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
- GENERATE_GOLDEN = False
-
- def rescale_np(image):
- """
- Apply the rescale
- """
- image = image / 255.0
- image = image - 1.0
- return image
-
-
- def get_rescaled(image_id):
- """
- Reads the image using DE ops and then rescales using Numpy
- """
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = vision.Decode()
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- num_iter = 0
- for item in data1.create_dict_iterator():
- image = item["image"]
- if num_iter == image_id:
- return rescale_np(image)
- num_iter += 1
-
- return None
-
-
- def test_rescale_op(plot=False):
- """
- Test rescale
- """
- logger.info("Test rescale")
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
-
- # define map operations
- decode_op = vision.Decode()
- rescale_op = vision.Rescale(1.0 / 255.0, -1.0)
-
- # apply map operations on images
- data1 = data1.map(input_columns=["image"], operations=decode_op)
-
- data2 = data1.map(input_columns=["image"], operations=rescale_op)
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image_original = item1["image"]
- image_de_rescaled = item2["image"]
- image_np_rescaled = get_rescaled(num_iter)
- mse = diff_mse(image_de_rescaled, image_np_rescaled)
- assert mse < 0.001 # rounding error
- logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
- num_iter += 1
- if plot:
- visualize_image(image_original, image_de_rescaled, mse, image_np_rescaled)
-
-
- def test_rescale_md5():
- """
- Test Rescale with md5 comparison
- """
- logger.info("Test Rescale with md5 comparison")
-
- # generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = vision.Decode()
- rescale_op = vision.Rescale(1.0 / 255.0, -1.0)
-
- # apply map operations on images
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=rescale_op)
-
- # check results with md5 comparison
- filename = "rescale_01_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
-
- if __name__ == "__main__":
- test_rescale_op(plot=True)
- test_rescale_md5()
|