|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import pytest
-
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as vision
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_exception_01():
- """
- Test single exception with invalid input
- """
- logger.info("test_exception_01")
- data = ds.TFRecordDataset(DATA_DIR, columns_list=["image"])
- with pytest.raises(TypeError) as info:
- data.map(input_columns=["image"], operations=vision.Resize(100, 100))
- assert "Argument interpolation with value 100 is not of type (<enum 'Inter'>,)" in str(info.value)
-
-
- def test_exception_02():
- """
- Test exceptions with invalid input, and test valid input
- """
- logger.info("test_exception_02")
- num_samples = -1
- with pytest.raises(ValueError) as info:
- ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
- assert 'Input num_samples is not within the required interval of (0 to 2147483647).' in str(info.value)
-
- num_samples = 1
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
- data = data.map(input_columns=["image"], operations=vision.Decode())
- data = data.map(input_columns=["image"], operations=vision.Resize((100, 100)))
- # Confirm 1 sample in dataset
- assert sum([1 for _ in data]) == 1
- num_iters = 0
- for _ in data.create_dict_iterator():
- num_iters += 1
- assert num_iters == 1
-
-
- if __name__ == '__main__':
- test_exception_01()
- test_exception_02()
|