|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- DATA_DIR = "../data/dataset/testPK/data"
-
-
- def test_imagefolder_basic():
- logger.info("Test Case basic")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDatasetV2(DATA_DIR)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_imagefolder_numsamples():
- logger.info("Test Case numSamples")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_samples=10, num_parallel_workers=2)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 10
-
- random_sampler = ds.RandomSampler(num_samples=3, replacement=True)
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- num_iter += 1
-
- assert num_iter == 3
-
- random_sampler = ds.RandomSampler(num_samples=3, replacement=False)
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- num_iter += 1
-
- assert num_iter == 3
-
-
- def test_imagefolder_numshards():
- logger.info("Test Case numShards")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_shards=4, shard_id=3)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 11
-
-
- def test_imagefolder_shardid():
- logger.info("Test Case withShardID")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_shards=4, shard_id=1)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 11
-
-
- def test_imagefolder_noshuffle():
- logger.info("Test Case noShuffle")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_imagefolder_extrashuffle():
- logger.info("Test Case extraShuffle")
- # define parameters
- repeat_count = 2
-
- # apply dataset operations
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, shuffle=True)
- data1 = data1.shuffle(buffer_size=5)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 88
-
-
- def test_imagefolder_classindex():
- logger.info("Test Case classIndex")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- class_index = {"class3": 333, "class1": 111}
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, class_indexing=class_index, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- golden = [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111,
- 333, 333, 333, 333, 333, 333, 333, 333, 333, 333, 333]
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- assert item["label"] == golden[num_iter]
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 22
-
-
- def test_imagefolder_negative_classindex():
- logger.info("Test Case negative classIndex")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- class_index = {"class3": -333, "class1": 111}
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, class_indexing=class_index, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- golden = [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111,
- -333, -333, -333, -333, -333, -333, -333, -333, -333, -333, -333]
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- assert item["label"] == golden[num_iter]
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 22
-
-
- def test_imagefolder_extensions():
- logger.info("Test Case extensions")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- ext = [".jpg", ".JPEG"]
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, extensions=ext)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_imagefolder_decode():
- logger.info("Test Case decode")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- ext = [".jpg", ".JPEG"]
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, extensions=ext, decode=True)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_sequential_sampler():
- logger.info("Test Case SequentialSampler")
-
- golden = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
-
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- sampler = ds.SequentialSampler()
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- result = []
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- result.append(item["label"])
- num_iter += 1
-
- logger.info("Result: {}".format(result))
- assert result == golden
-
-
- def test_random_sampler():
- logger.info("Test Case RandomSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- sampler = ds.RandomSampler()
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_distributed_sampler():
- logger.info("Test Case DistributedSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- sampler = ds.DistributedSampler(10, 1)
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 5
-
-
- def test_pk_sampler():
- logger.info("Test Case PKSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- sampler = ds.PKSampler(3)
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 12
-
-
- def test_subset_random_sampler():
- logger.info("Test Case SubsetRandomSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- indices = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11]
- sampler = ds.SubsetRandomSampler(indices)
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 12
-
-
- def test_weighted_random_sampler():
- logger.info("Test Case WeightedRandomSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 1.1]
- sampler = ds.WeightedRandomSampler(weights, 11)
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 11
-
-
- def test_imagefolder_rename():
- logger.info("Test Case rename")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_samples=10)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 10
-
- data1 = data1.rename(input_columns=["image"], output_columns="image2")
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image2"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 10
-
-
- def test_imagefolder_zip():
- logger.info("Test Case zip")
- # define parameters
- repeat_count = 2
-
- # apply dataset operations
- data1 = ds.ImageFolderDatasetV2(DATA_DIR, num_samples=10)
- data2 = ds.ImageFolderDatasetV2(DATA_DIR, num_samples=10)
-
- data1 = data1.repeat(repeat_count)
- # rename dataset2 for no conflict
- data2 = data2.rename(input_columns=["image", "label"], output_columns=["image1", "label1"])
- data3 = ds.zip((data1, data2))
-
- num_iter = 0
- for item in data3.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 10
-
-
- if __name__ == '__main__':
- test_imagefolder_basic()
- logger.info('test_imagefolder_basic Ended.\n')
-
- test_imagefolder_numsamples()
- logger.info('test_imagefolder_numsamples Ended.\n')
-
- test_sequential_sampler()
- logger.info('test_sequential_sampler Ended.\n')
-
- test_random_sampler()
- logger.info('test_random_sampler Ended.\n')
-
- test_distributed_sampler()
- logger.info('test_distributed_sampler Ended.\n')
-
- test_pk_sampler()
- logger.info('test_pk_sampler Ended.\n')
-
- test_subset_random_sampler()
- logger.info('test_subset_random_sampler Ended.\n')
-
- test_weighted_random_sampler()
- logger.info('test_weighted_random_sampler Ended.\n')
-
- test_imagefolder_numshards()
- logger.info('test_imagefolder_numshards Ended.\n')
-
- test_imagefolder_shardid()
- logger.info('test_imagefolder_shardid Ended.\n')
-
- test_imagefolder_noshuffle()
- logger.info('test_imagefolder_noshuffle Ended.\n')
-
- test_imagefolder_extrashuffle()
- logger.info('test_imagefolder_extrashuffle Ended.\n')
-
- test_imagefolder_classindex()
- logger.info('test_imagefolder_classindex Ended.\n')
-
- test_imagefolder_negative_classindex()
- logger.info('test_imagefolder_negative_classindex Ended.\n')
-
- test_imagefolder_extensions()
- logger.info('test_imagefolder_extensions Ended.\n')
-
- test_imagefolder_decode()
- logger.info('test_imagefolder_decode Ended.\n')
-
- test_imagefolder_rename()
- logger.info('test_imagefolder_rename Ended.\n')
-
- test_imagefolder_zip()
- logger.info('test_imagefolder_zip Ended.\n')
|