|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- @File : test_compile.py
- @Author:
- @Date : 2019-03-20
- @Desc : test mindspore compile method
- """
- import logging
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor, Model, context
- from mindspore.nn.optim import Momentum
- from mindspore.ops.composite import add_flags
- from ...ut_filter import non_graph_engine
-
- log = logging.getLogger("test")
- log.setLevel(level=logging.ERROR)
-
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self):
- super(Net, self).__init__()
- self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal')
- self.relu = nn.ReLU()
- self.flatten = nn.Flatten()
-
- def construct(self, x):
- x = self.conv(x)
- x = self.relu(x)
- out = self.flatten(x)
- return out
-
-
- loss = nn.MSELoss()
-
-
- # Test case 1 : test the new compiler interface
- # _build_train_graph is deprecated
- def test_build():
- """ test_build """
- Tensor(np.random.randint(0, 255, [1, 3, 224, 224]))
- Tensor(np.random.randint(0, 10, [1, 10]))
- net = Net()
- opt = Momentum(net.get_parameters(), learning_rate=0.1, momentum=0.9)
- Model(net, loss_fn=loss, optimizer=opt, metrics=None)
-
-
- # Test case 2 : test the use different args to run graph
- class Net2(nn.Cell):
- """ Net2 definition """
-
- def __init__(self):
- super(Net2, self).__init__()
- self.relu = nn.ReLU()
-
- def construct(self, x):
- x = self.relu(x)
- return x
-
-
- @non_graph_engine
- def test_different_args_run():
- """ test_different_args_run """
- np1 = np.random.randn(2, 3, 4, 5).astype(np.float32)
- input_me1 = Tensor(np1)
- np2 = np.random.randn(2, 3, 4, 5).astype(np.float32)
- input_me2 = Tensor(np2)
-
- net = Net2()
- net = add_flags(net, predit=True)
- context.set_context(mode=context.GRAPH_MODE)
- model = Model(net)
- me1 = model.predict(input_me1)
- me2 = model.predict(input_me2)
- out_me1 = me1.asnumpy()
- out_me2 = me2.asnumpy()
- print(np1)
- print(np2)
- print(out_me1)
- print(out_me2)
- assert not np.allclose(out_me1, out_me2, 0.01, 0.01)
|