|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- test assign sub
- """
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.ops.operations as P
- from mindspore import Tensor
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- import mindspore as ms
-
- class AssignW(nn.Cell):
- def __init__(self):
- super(AssignW, self).__init__()
- self.assign = P.Assign()
-
- def construct(self, x, w):
- self.assign(x, w)
- return x
-
-
- class AssignOp(nn.Cell):
- def __init__(self):
- super(AssignOp, self).__init__()
- self.b = Parameter(initializer('ones', [5]), name='b')
-
-
- def construct(self, w):
- self.b = w
- return w
-
-
- def test_assign_by_operator():
- context.set_context(mode=context.GRAPH_MODE)
- net = AssignOp()
- net.to_float(ms.float16)
- input_data = Tensor(np.ones([5]).astype(np.float32))
- net(input_data)
-
-
- class NetScatterNdUpdate(nn.Cell):
- def __init__(self):
- super(NetScatterNdUpdate, self).__init__()
- self.b = Parameter(initializer('ones', [5, 5]), name='b')
- self.scatter = P.ScatterNdUpdate()
-
- def construct(self, idx, x):
- return self.scatter(self.b, idx, x)
-
-
- def test_scatter_nd_update():
- context.set_context(mode=context.GRAPH_MODE)
- net = NetScatterNdUpdate()
- x = Tensor(np.ones([5]).astype(np.float16))
- idx = Tensor(np.ones([1]).astype(np.int32))
- net(idx, x)
|