|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_momentum """
- import functools
- import numpy as np
-
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore import Parameter, ParameterTuple, Tensor
- from mindspore.ops import composite as C
- from mindspore.ops import functional as F
- from mindspore.ops import operations as P
- from ..ut_filter import non_graph_engine
- from ....mindspore_test_framework.mindspore_test import mindspore_test
- from ....mindspore_test_framework.pipeline.forward.compile_forward \
- import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
-
- # pylint: disable=W0613
- # W0613: unused-argument
-
-
- run_opt = C.MultitypeFuncGraph("run_opt")
-
-
- @run_opt.register("Function", "Tensor", "Tensor", "Tensor",
- "Tensor", "Tensor",
- "Tensor")
- def tensor_run_opt(opt, iters, learning_rate, momentum,
- gradient, variable, moment):
- """ tensor_run_opt """
- success = True
- new_weight = opt(variable, moment, learning_rate, gradient, momentum)[0]
- success = F.depend(success, F.assign(variable, new_weight))
- return success
-
-
- class OptimizerByMomentum(nn.Cell):
- """ OptimizerByMomentum definition """
-
- def __init__(self, weights):
- super(OptimizerByMomentum, self).__init__()
- self.learning_rate = Parameter(0.1, name="learning_rate")
- self.momentum = Parameter(0.05, name="momentum")
- self.iter = Parameter(0, name="iter")
-
- self.weights = weights
- self.moments = weights.clone(prefix="moments", init='zeros')
-
- self.hyper_map = C.HyperMap()
- self.opt = P.ApplyMomentum()
-
- def construct(self, grads):
- success = True
- weights = self.weights
- moments = self.moments
- success = self.hyper_map(F.partial(run_opt, self.opt, self.iter,
- self.learning_rate, self.momentum),
- grads, weights, moments)
- return success
-
-
- class TrainStepWrap(nn.Cell):
- """ TrainStepWrap definition """
-
- def __init__(self, network):
- super(TrainStepWrap, self).__init__()
- self.network = network
- self.weights = ParameterTuple(network.get_parameters())
- self.optimizer = OptimizerByMomentum(self.weights)
- self.hyper_map = C.HyperMap()
-
- def construct(self, x, label):
- weights = self.weights
- grads = C.grad_by_list(self.network, weights)(x, label)
- return self.optimizer(grads)
-
-
- class NetWithLossClass(nn.Cell):
- """ NetWithLossClass definition """
-
- def __init__(self, network):
- super(NetWithLossClass, self).__init__(auto_prefix=False)
- self.loss = nn.SoftmaxCrossEntropyWithLogits()
- self.network = network
-
- def construct(self, x, label):
- predict = self.network(x)
- return self.loss(predict, label)
-
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self):
- super(Net, self).__init__()
- self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
- self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name="bias")
- self.matmul = P.MatMul()
- self.biasAdd = P.BiasAdd()
-
- def construct(self, x):
- return self.biasAdd(self.matmul(x, self.weight), self.bias)
-
-
- test_case_ops = [
- ('Momentum', {
- 'block': TrainStepWrap(NetWithLossClass(Net())),
- 'desc_inputs': [Tensor(np.ones([1, 64]).astype(np.float32)),
- Tensor(np.zeros([1, 10]).astype(np.float32))]}),
- ]
-
- test_case_lists = [test_case_ops]
- test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
- # use -k to select certain testcast
- # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
-
-
-
- @non_graph_engine
- @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
- def test_exec():
- context.set_context(mode=context.GRAPH_MODE)
- return test_exec_case
|