|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- test_structure_output
- """
- import numpy as np
-
- import mindspore.ops.operations as P
- from mindspore import Tensor, context
- from mindspore.nn import Cell
- from mindspore.ops.functional import depend
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- def test_output_const_tuple():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.tuple_1 = (1, 2, 3)
- self.tuple_2 = (4, 5, 6)
-
- def construct(self):
- ret = self.tuple_1 + self.tuple_2
- return ret
-
- net = Net()
- assert net() == (1, 2, 3, 4, 5, 6)
-
-
- def test_output_const_list():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.tuple_1 = [1, 2, 3]
-
- def construct(self):
- ret = self.tuple_1
- return ret
-
- net = Net()
- assert net() == (1, 2, 3)
-
-
- def test_output_const_int():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.number_1 = 2
- self.number_2 = 3
-
- def construct(self):
- ret = self.number_1 + self.number_2
- return ret
-
- net = Net()
- assert net() == 5
-
-
- def test_output_const_str():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.str = "hello world"
-
- def construct(self):
- ret = self.str
- return ret
-
- net = Net()
- assert net() == "hello world"
-
-
- def test_output_parameter_tuple():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
-
- def construct(self, x):
- ret = x
- return ret
-
- x = (1, 2, 3)
- net = Net()
- assert net(x) == x
-
-
- def test_output_parameter_list():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
-
- def construct(self, x):
- ret = x
- return ret
-
- x = [1, 2, 3]
- net = Net()
- assert net(x) == x
-
-
- def test_output_parameter_int():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
-
- def construct(self, x):
- ret = x
- return ret
-
- x = 88
- net = Net()
- assert net(x) == x
-
-
- def test_output_parameter_str():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
-
- def construct(self, x):
- ret = x
- return ret
-
- x = "hello world"
- net = Net()
- assert net(x) == x
-
-
- def test_tuple_tuple_0():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
-
- def construct(self, x, y):
- xx = self.add(x, x)
- yy = self.add(y, y)
- xxx = self.sub(x, x)
- yyy = self.sub(y, y)
- ret = ((xx, yy), (xxx, yyy))
- ret = (ret, ret)
- return ret
-
- net = Net()
- x = Tensor(np.ones([2], np.int32))
- y = Tensor(np.zeros([3], np.int32))
- net(x, y)
-
-
- def test_tuple_tuple_1():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
-
- def construct(self, x, y):
- xx = self.add(x, x)
- yy = self.add(y, y)
- ret = ((xx, yy), x)
- ret = (ret, ret)
- return ret
-
- net = Net()
- x = Tensor(np.ones([2], np.int32))
- y = Tensor(np.zeros([3], np.int32))
- net(x, y)
-
-
- def test_tuple_tuple_2():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.relu = P.ReLU()
- self.depend = depend
-
- def construct(self, x, y):
- xx = self.add(x, x)
- yy = self.add(y, y)
- xxx = self.sub(x, x)
- yyy = self.sub(y, y)
- z = self.relu(x)
- ret = ((xx, yy), (xxx, yyy))
- ret = (ret, ret)
- ret = self.depend(ret, z)
- return ret
-
- net = Net()
- x = Tensor(np.ones([2], np.int32))
- y = Tensor(np.zeros([3], np.int32))
- net(x, y)
-
-
- def test_tuple_tuple_3():
- class Net(Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.add = P.TensorAdd()
- self.sub = P.Sub()
- self.relu = P.ReLU()
- self.depend = depend
-
- def construct(self, x, y):
- xx = self.add(x, x)
- yy = self.add(y, y)
- z = self.relu(x)
- ret = ((xx, yy), x)
- ret = (ret, ret)
- ret = self.depend(ret, z)
- return ret
-
- net = Net()
- x = Tensor(np.ones([2], np.int32))
- y = Tensor(np.zeros([3], np.int32))
- net(x, y)
-
-
- def test_soft():
- class SoftmaxCrossEntropyWithLogitsNet(Cell):
- def __init__(self):
- super(SoftmaxCrossEntropyWithLogitsNet, self).__init__()
- self.soft = P.SoftmaxCrossEntropyWithLogits()
- self.value = (Tensor(np.zeros((2, 2)).astype(np.float32)), Tensor(np.ones((2, 2)).astype(np.float32)))
-
- def construct(self, x, y, z):
- xx = x + y
- yy = x - y
- ret = self.soft(xx, yy)
- ret = (ret, z)
- ret = (ret, self.value)
- return ret
-
- input1 = Tensor(np.zeros((2, 2)).astype(np.float32))
- input2 = Tensor(np.ones((2, 2)).astype(np.float32))
- input3 = Tensor((np.ones((2, 2)) + np.ones((2, 2))).astype(np.float32))
- net = SoftmaxCrossEntropyWithLogitsNet()
- net(input1, input2, input3)
-
-
- def test_const_depend():
- class ConstDepend(Cell):
- def __init__(self):
- super(ConstDepend, self).__init__()
- self.value = (Tensor(np.zeros((2, 3)).astype(np.float32)), Tensor(np.ones((2, 3)).astype(np.float32)))
- self.soft = P.SoftmaxCrossEntropyWithLogits()
- self.depend = depend
-
- def construct(self, x, y, z):
- ret = x + y
- ret = ret * z
- ret = self.depend(self.value, ret)
- ret = (ret, self.soft(x, y))
- return ret
-
- input1 = Tensor(np.zeros((2, 2)).astype(np.float32))
- input2 = Tensor(np.ones((2, 2)).astype(np.float32))
- input3 = Tensor((np.ones((2, 2)) + np.ones((2, 2))).astype(np.float32))
- net = ConstDepend()
- net(input1, input2, input3)
|