|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- test msssim
- """
- import numpy as np
- import pytest
-
- import mindspore.common.dtype as mstype
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
-
- _MSSSIM_WEIGHTS = (0.0448, 0.2856, 0.3001, 0.2363, 0.1333)
-
- class MSSSIMNet(nn.Cell):
- def __init__(self, max_val=1.0, power_factors=_MSSSIM_WEIGHTS, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03):
- super(MSSSIMNet, self).__init__()
- self.net = nn.MSSSIM(max_val, power_factors, filter_size, filter_sigma, k1, k2)
-
- def construct(self, img1, img2):
- return self.net(img1, img2)
-
-
- def test_compile():
- factors = (0.033, 0.033, 0.033)
- net = MSSSIMNet(power_factors=factors)
- img1 = Tensor(np.random.random((8, 3, 128, 128)))
- img2 = Tensor(np.random.random((8, 3, 128, 128)))
- _executor.compile(net, img1, img2)
-
-
- def test_compile_grayscale():
- max_val = 255
- factors = (0.033, 0.033, 0.033)
- net = MSSSIMNet(max_val=max_val, power_factors=factors)
- img1 = Tensor(np.random.randint(0, 256, (8, 3, 128, 128), np.uint8))
- img2 = Tensor(np.random.randint(0, 256, (8, 3, 128, 128), np.uint8))
- _executor.compile(net, img1, img2)
-
-
- def test_msssim_max_val_negative():
- max_val = -1
- with pytest.raises(ValueError):
- _ = MSSSIMNet(max_val)
-
-
- def test_msssim_max_val_bool():
- max_val = True
- with pytest.raises(TypeError):
- _ = MSSSIMNet(max_val)
-
-
- def test_msssim_max_val_zero():
- max_val = 0
- with pytest.raises(ValueError):
- _ = MSSSIMNet(max_val)
-
-
- def test_msssim_power_factors_set():
- with pytest.raises(TypeError):
- _ = MSSSIMNet(power_factors={0.033, 0.033, 0.033})
-
-
- def test_msssim_filter_size_float():
- with pytest.raises(TypeError):
- _ = MSSSIMNet(filter_size=1.1)
-
-
- def test_msssim_filter_size_zero():
- with pytest.raises(ValueError):
- _ = MSSSIMNet(filter_size=0)
-
-
- def test_msssim_filter_sigma_zero():
- with pytest.raises(ValueError):
- _ = MSSSIMNet(filter_sigma=0.0)
-
-
- def test_msssim_filter_sigma_negative():
- with pytest.raises(ValueError):
- _ = MSSSIMNet(filter_sigma=-0.1)
-
-
- def test_msssim_different_shape():
- shape_1 = (8, 3, 128, 128)
- shape_2 = (8, 3, 256, 256)
- factors = (0.033, 0.033, 0.033)
- img1 = Tensor(np.random.random(shape_1))
- img2 = Tensor(np.random.random(shape_2))
- net = MSSSIMNet(power_factors=factors)
- with pytest.raises(ValueError):
- _executor.compile(net, img1, img2)
-
-
- def test_msssim_different_dtype():
- dtype_1 = mstype.float32
- dtype_2 = mstype.float16
- factors = (0.033, 0.033, 0.033)
- img1 = Tensor(np.random.random((8, 3, 128, 128)), dtype=dtype_1)
- img2 = Tensor(np.random.random((8, 3, 128, 128)), dtype=dtype_2)
- net = MSSSIMNet(power_factors=factors)
- with pytest.raises(TypeError):
- _executor.compile(net, img1, img2)
-
-
- def test_msssim_invalid_5d_input():
- shape_1 = (8, 3, 128, 128)
- shape_2 = (8, 3, 256, 256)
- invalid_shape = (8, 3, 128, 128, 1)
- factors = (0.033, 0.033, 0.033)
- img1 = Tensor(np.random.random(shape_1))
- invalid_img1 = Tensor(np.random.random(invalid_shape))
- img2 = Tensor(np.random.random(shape_2))
- invalid_img2 = Tensor(np.random.random(invalid_shape))
-
- net = MSSSIMNet(power_factors=factors)
- with pytest.raises(ValueError):
- _executor.compile(net, invalid_img1, img2)
- with pytest.raises(ValueError):
- _executor.compile(net, img1, invalid_img2)
- with pytest.raises(ValueError):
- _executor.compile(net, invalid_img1, invalid_img2)
|