|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test loss """
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
- from ..ut_filter import non_graph_engine
-
-
- def test_L1Loss():
- loss = nn.L1Loss()
- input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32))
- loss(input_data, target_data)
-
-
- def test_MSELoss():
- loss = nn.MSELoss()
- input_data = Tensor(np.array([[1, 2, 3], [2, 3, 2]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 0, 5], [1, 2, 3]]).astype(np.float32))
- loss(input_data, target_data)
-
-
- @non_graph_engine
- def test_SoftmaxCrossEntropyWithLogits():
- """ test_SoftmaxCrossEntropyWithLogits """
- loss = nn.SoftmaxCrossEntropyWithLogits()
-
- logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- loss.construct(logits, labels)
-
-
- def test_SoftmaxCrossEntropyWithLogits_reduce():
- """ test_SoftmaxCrossEntropyWithLogits """
- loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean")
-
- logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- loss(logits, labels)
-
-
- def test_SoftmaxCrossEntropyExpand():
- from mindspore import context
- context.set_context(mode=context.GRAPH_MODE)
- loss = nn.SoftmaxCrossEntropyExpand()
-
- logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- labels = Tensor(np.random.randint(0, 9, [10,]).astype(np.float32))
- _executor.compile(loss, logits, labels)
-
- def test_cosine_embedding_loss():
- """ test CosineEmbeddingLoss """
- loss = nn.CosineEmbeddingLoss()
- x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]).astype(np.float32))
- x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]).astype(np.float32))
- label = Tensor(np.array([1, -1]).astype(np.int32))
- loss(x1, x2, label)
|