|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ Test Dynamic Learning Rate """
- import pytest
-
- from mindspore.nn import dynamic_lr as dr
-
- milestone = [10, 20, 30]
- learning_rates = [0.1, 0.05, 0.01]
- learning_rate = 0.1
- end_learning_rate = 0.01
- decay_rate = 0.9
- total_step = 30
- step_per_epoch = 3
- decay_epoch = 2
- min_lr = 0.01
- max_lr = 0.1
- power = 0.5
- warmup_epoch = 2
-
- class TestInputs:
- def test_milestone1(self):
- milestone1 = 1
- with pytest.raises(TypeError):
- dr.piecewise_constant_lr(milestone1, learning_rates)
-
- def test_milestone2(self):
- milestone1 = [20, 10, 1]
- with pytest.raises(ValueError):
- dr.piecewise_constant_lr(milestone1, learning_rates)
-
- milestone2 = [1.0, 2.0, True]
- with pytest.raises(TypeError):
- dr.piecewise_constant_lr(milestone2, learning_rates)
-
- def test_learning_rates1(self):
- lr = True
- with pytest.raises(TypeError):
- dr.piecewise_constant_lr(milestone, lr)
-
- def test_learning_rates2(self):
- lr = [1, 2, 1]
- with pytest.raises(TypeError):
- dr.piecewise_constant_lr(milestone, lr)
-
- def test_learning_rate_type(self):
- lr = True
- with pytest.raises(TypeError):
- dr.exponential_decay_lr(lr, decay_rate, total_step, step_per_epoch, decay_epoch)
-
- with pytest.raises(TypeError):
- dr.polynomial_decay_lr(lr, end_learning_rate, total_step, step_per_epoch, decay_epoch, power)
-
- def test_learning_rate_value(self):
- lr = -1.0
- with pytest.raises(ValueError):
- dr.exponential_decay_lr(lr, decay_rate, total_step, step_per_epoch, decay_epoch)
-
- with pytest.raises(ValueError):
- dr.polynomial_decay_lr(lr, end_learning_rate, total_step, step_per_epoch, decay_epoch, power)
-
- def test_end_learning_rate_type(self):
- lr = True
- with pytest.raises(TypeError):
- dr.polynomial_decay_lr(learning_rate, lr, total_step, step_per_epoch, decay_epoch, power)
-
- def test_end_learning_rate_value(self):
- lr = -1.0
- with pytest.raises(ValueError):
- dr.polynomial_decay_lr(learning_rate, lr, total_step, step_per_epoch, decay_epoch, power)
-
- def test_decay_rate_type(self):
- rate = 'a'
- with pytest.raises(TypeError):
- dr.exponential_decay_lr(learning_rate, rate, total_step, step_per_epoch, decay_epoch)
-
- def test_decay_rate_value(self):
- rate = -1.0
- with pytest.raises(ValueError):
- dr.exponential_decay_lr(learning_rate, rate, total_step, step_per_epoch, decay_epoch)
-
- def test_total_step1(self):
- total_step1 = 2.0
- with pytest.raises(TypeError):
- dr.exponential_decay_lr(learning_rate, decay_rate, total_step1, step_per_epoch, decay_epoch)
-
- with pytest.raises(TypeError):
- dr.cosine_decay_lr(min_lr, max_lr, total_step1, step_per_epoch, decay_epoch)
-
- with pytest.raises(TypeError):
- dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step1, step_per_epoch, decay_epoch, power)
-
- def test_total_step2(self):
- total_step1 = -1
- with pytest.raises(ValueError):
- dr.exponential_decay_lr(learning_rate, decay_rate, total_step1, step_per_epoch, decay_epoch)
-
- with pytest.raises(ValueError):
- dr.cosine_decay_lr(min_lr, max_lr, total_step1, step_per_epoch, decay_epoch)
-
- with pytest.raises(ValueError):
- dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step1, step_per_epoch, decay_epoch, power)
-
- def test_step_per_epoch1(self):
- step_per_epoch1 = True
- with pytest.raises(TypeError):
- dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch1, decay_epoch)
-
- with pytest.raises(TypeError):
- dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch1, decay_epoch)
-
- with pytest.raises(TypeError):
- dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch1, decay_epoch, power)
-
- def test_step_per_epoch2(self):
- step_per_epoch1 = -1
- with pytest.raises(ValueError):
- dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch1, decay_epoch)
-
- with pytest.raises(ValueError):
- dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch1, decay_epoch)
-
- with pytest.raises(ValueError):
- dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch1, decay_epoch, power)
-
- def test_decay_epoch1(self):
- decay_epoch1 = 'm'
- with pytest.raises(TypeError):
- dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch1)
-
- with pytest.raises(TypeError):
- dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch1)
-
- with pytest.raises(TypeError):
- dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch1, power)
-
- def test_decay_epoch2(self):
- decay_epoch1 = -1
- with pytest.raises(ValueError):
- dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch1)
-
- with pytest.raises(ValueError):
- dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch1)
-
- with pytest.raises(ValueError):
- dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch1, power)
-
- def test_is_stair(self):
- is_stair = 1
- with pytest.raises(TypeError):
- dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair)
-
- def test_min_lr_type(self):
- min_lr1 = True
- with pytest.raises(TypeError):
- dr.cosine_decay_lr(min_lr1, max_lr, total_step, step_per_epoch, decay_epoch)
-
- def test_min_lr_value(self):
- min_lr1 = -1.0
- with pytest.raises(ValueError):
- dr.cosine_decay_lr(min_lr1, max_lr, total_step, step_per_epoch, decay_epoch)
-
- def test_max_lr_type(self):
- max_lr1 = 'a'
- with pytest.raises(TypeError):
- dr.cosine_decay_lr(min_lr, max_lr1, total_step, step_per_epoch, decay_epoch)
-
- def test_max_lr_value(self):
- max_lr1 = -1.0
- with pytest.raises(ValueError):
- dr.cosine_decay_lr(min_lr, max_lr1, total_step, step_per_epoch, decay_epoch)
-
- def test_power(self):
- power1 = True
- with pytest.raises(TypeError):
- dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power1)
-
- def test_update_decay_epoch(self):
- update_decay_epoch = 1
- with pytest.raises(TypeError):
- dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch,
- power, update_decay_epoch)
-
-
- def test_learning_rate():
- lr = dr.piecewise_constant_lr(milestone, learning_rates)
- assert len(lr) == milestone[-1]
-
-
- def test_exponential_decay():
- lr1 = dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
- assert len(lr1) == total_step
-
- lr2 = dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True)
- assert len(lr2) == total_step
-
-
- def test_enatural_exp_decay():
- lr1 = dr.natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
- assert len(lr1) == total_step
-
- lr2 = dr.natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True)
- assert len(lr2) == total_step
-
-
- def test_inverse_decay():
- lr1 = dr.inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
- assert len(lr1) == total_step
-
- lr2 = dr.inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True)
- assert len(lr2) == total_step
-
-
- def test_cosine_decay():
- lr = dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch)
- assert len(lr) == total_step
-
-
- def test_polynomial_decay():
- lr1 = dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power)
- assert len(lr1) == total_step
- lr2 = dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power,
- True)
- assert len(lr2) == total_step
-
-
- def test_warmup():
- lr1 = dr.warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch)
- assert len(lr1) == total_step
|