|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Test nn.Distribution.
-
- Including Normal Distribution and Bernoulli Distribution.
- """
- import pytest
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import dtype
- from mindspore import Tensor
-
- def test_normal_shape_errpr():
- """
- Invalid shapes.
- """
- with pytest.raises(ValueError):
- nn.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
-
- def test_no_arguments():
- """
- No args passed in during initialization.
- """
- n = nn.Normal()
- assert isinstance(n, nn.Distribution)
- b = nn.Bernoulli()
- assert isinstance(b, nn.Distribution)
-
- def test_with_arguments():
- """
- Args passed in during initialization.
- """
- n = nn.Normal([3.0], [4.0], dtype=dtype.float32)
- assert isinstance(n, nn.Distribution)
- b = nn.Bernoulli([0.3, 0.5], dtype=dtype.int32)
- assert isinstance(b, nn.Distribution)
-
- class NormalProb(nn.Cell):
- """
- Normal distribution: initialize with mean/sd.
- """
- def __init__(self):
- super(NormalProb, self).__init__()
- self.normal = nn.Normal(3.0, 4.0, dtype=dtype.float32)
-
- def construct(self, value):
- x = self.normal('prob', value)
- y = self.normal('log_prob', value)
- return x, y
-
- def test_normal_prob():
- """
- Test pdf/log_pdf: passing value through construct.
- """
- net = NormalProb()
- value = Tensor([0.5, 1.0], dtype=dtype.float32)
- pdf, log_pdf = net(value)
- assert isinstance(pdf, Tensor)
- assert isinstance(log_pdf, Tensor)
-
- class NormalProb1(nn.Cell):
- """
- Normal distribution: initialize without mean/sd.
- """
- def __init__(self):
- super(NormalProb1, self).__init__()
- self.normal = nn.Normal()
-
- def construct(self, value, mean, sd):
- x = self.normal('prob', value, mean, sd)
- y = self.normal('log_prob', value, mean, sd)
- return x, y
-
- def test_normal_prob1():
- """
- Test pdf/logpdf: passing mean/sd, value through construct.
- """
- net = NormalProb1()
- value = Tensor([0.5, 1.0], dtype=dtype.float32)
- mean = Tensor([0.0], dtype=dtype.float32)
- sd = Tensor([1.0], dtype=dtype.float32)
- pdf, log_pdf = net(value, mean, sd)
- assert isinstance(pdf, Tensor)
- assert isinstance(log_pdf, Tensor)
-
- class NormalProb2(nn.Cell):
- """
- Normal distribution: initialize with mean/sd.
- """
- def __init__(self):
- super(NormalProb2, self).__init__()
- self.normal = nn.Normal(3.0, 4.0, dtype=dtype.float32)
-
- def construct(self, value, mean, sd):
- x = self.normal('prob', value, mean, sd)
- y = self.normal('log_prob', value, mean, sd)
- return x, y
-
- def test_normal_prob2():
- """
- Test pdf/log_pdf: passing mean/sd through construct.
- Overwrite original mean/sd.
- """
- net = NormalProb2()
- value = Tensor([0.5, 1.0], dtype=dtype.float32)
- mean = Tensor([0.0], dtype=dtype.float32)
- sd = Tensor([1.0], dtype=dtype.float32)
- pdf, log_pdf = net(value, mean, sd)
- assert isinstance(pdf, Tensor)
- assert isinstance(log_pdf, Tensor)
-
- class BernoulliProb(nn.Cell):
- """
- Bernoulli distribution: initialize with probs.
- """
- def __init__(self):
- super(BernoulliProb, self).__init__()
- self.bernoulli = nn.Bernoulli(0.5, dtype=dtype.int32)
-
- def construct(self, value):
- return self.bernoulli('prob', value)
-
- class BernoulliLogProb(nn.Cell):
- """
- Bernoulli distribution: initialize with probs.
- """
- def __init__(self):
- super(BernoulliLogProb, self).__init__()
- self.bernoulli = nn.Bernoulli(0.5, dtype=dtype.int32)
-
- def construct(self, value):
- return self.bernoulli('log_prob', value)
-
-
- def test_bernoulli_prob():
- """
- Test pmf/log_pmf: passing value through construct.
- """
- net = BernoulliProb()
- value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
- pmf = net(value)
- assert isinstance(pmf, Tensor)
-
- def test_bernoulli_log_prob():
- """
- Test pmf/log_pmf: passing value through construct.
- """
- net = BernoulliLogProb()
- value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
- log_pmf = net(value)
- assert isinstance(log_pmf, Tensor)
-
- class BernoulliProb1(nn.Cell):
- """
- Bernoulli distribution: initialize without probs.
- """
- def __init__(self):
- super(BernoulliProb1, self).__init__()
- self.bernoulli = nn.Bernoulli()
-
- def construct(self, value, probs):
- return self.bernoulli('prob', value, probs)
-
- class BernoulliLogProb1(nn.Cell):
- """
- Bernoulli distribution: initialize without probs.
- """
- def __init__(self):
- super(BernoulliLogProb1, self).__init__()
- self.bernoulli = nn.Bernoulli()
-
- def construct(self, value, probs):
- return self.bernoulli('log_prob', value, probs)
-
-
- def test_bernoulli_prob1():
- """
- Test pmf/log_pmf: passing probs through construct.
- """
- net = BernoulliProb1()
- value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
- probs = Tensor([0.3], dtype=dtype.float32)
- pmf = net(value, probs)
- assert isinstance(pmf, Tensor)
-
- def test_bernoulli_log_prob1():
- """
- Test pmf/log_pmf: passing probs through construct.
- """
- net = BernoulliLogProb1()
- value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
- probs = Tensor([0.3], dtype=dtype.float32)
- log_pmf = net(value, probs)
- assert isinstance(log_pmf, Tensor)
-
- class BernoulliProb2(nn.Cell):
- """
- Bernoulli distribution: initialize with probs.
- """
- def __init__(self):
- super(BernoulliProb2, self).__init__()
- self.bernoulli = nn.Bernoulli(0.5)
-
- def construct(self, value, probs):
- return self.bernoulli('prob', value, probs)
-
- class BernoulliLogProb2(nn.Cell):
- """
- Bernoulli distribution: initialize with probs.
- """
- def __init__(self):
- super(BernoulliLogProb2, self).__init__()
- self.bernoulli = nn.Bernoulli(0.5)
-
- def construct(self, value, probs):
- return self.bernoulli('log_prob', value, probs)
-
-
- def test_bernoulli_prob2():
- """
- Test pmf/log_pmf: passing probs/value through construct.
- Overwrite original probs.
- """
- net = BernoulliProb2()
- value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
- probs = Tensor([0.3], dtype=dtype.float32)
- pmf = net(value, probs)
- assert isinstance(pmf, Tensor)
-
- def test_bernoulli_log_prob2():
- """
- Test pmf/log_pmf: passing probs/value through construct.
- Overwrite original probs.
- """
- net = BernoulliLogProb2()
- value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
- probs = Tensor([0.3], dtype=dtype.float32)
- log_pmf = net(value, probs)
- assert isinstance(log_pmf, Tensor)
-
-
- class NormalKl(nn.Cell):
- """
- Test class: kl_loss of Normal distribution.
- """
- def __init__(self):
- super(NormalKl, self).__init__()
- self.n = nn.Normal(Tensor([3.0]), Tensor([4.0]), dtype=dtype.float32)
-
- def construct(self, x_, y_):
- return self.n('kl_loss', 'Normal', x_, y_)
-
- class BernoulliKl(nn.Cell):
- """
- Test class: kl_loss between Bernoulli distributions.
- """
- def __init__(self):
- super(BernoulliKl, self).__init__()
- self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
-
- def construct(self, x_):
- return self.b('kl_loss', 'Bernoulli', x_)
-
- def test_kl():
- """
- Test kl_loss function.
- """
- nor_net = NormalKl()
- mean_b = np.array([1.0]).astype(np.float32)
- sd_b = np.array([1.0]).astype(np.float32)
- mean = Tensor(mean_b, dtype=dtype.float32)
- sd = Tensor(sd_b, dtype=dtype.float32)
- loss = nor_net(mean, sd)
- assert isinstance(loss, Tensor)
-
- ber_net = BernoulliKl()
- probs_b = Tensor([0.3], dtype=dtype.float32)
- loss = ber_net(probs_b)
- assert isinstance(loss, Tensor)
-
-
- class NormalKlNoArgs(nn.Cell):
- """
- Test class: kl_loss of Normal distribution.
- No args during initialization.
- """
- def __init__(self):
- super(NormalKlNoArgs, self).__init__()
- self.n = nn.Normal(dtype=dtype.float32)
-
- def construct(self, x_, y_, w_, v_):
- return self.n('kl_loss', 'Normal', x_, y_, w_, v_)
-
- class BernoulliKlNoArgs(nn.Cell):
- """
- Test class: kl_loss between Bernoulli distributions.
- No args during initialization.
- """
- def __init__(self):
- super(BernoulliKlNoArgs, self).__init__()
- self.b = nn.Bernoulli(dtype=dtype.int32)
-
- def construct(self, x_, y_):
- return self.b('kl_loss', 'Bernoulli', x_, y_)
-
- def test_kl_no_args():
- """
- Test kl_loss function.
- """
- nor_net = NormalKlNoArgs()
- mean_b = np.array([1.0]).astype(np.float32)
- sd_b = np.array([1.0]).astype(np.float32)
- mean_a = np.array([2.0]).astype(np.float32)
- sd_a = np.array([3.0]).astype(np.float32)
- mean_b = Tensor(mean_b, dtype=dtype.float32)
- sd_b = Tensor(sd_b, dtype=dtype.float32)
- mean_a = Tensor(mean_a, dtype=dtype.float32)
- sd_a = Tensor(sd_a, dtype=dtype.float32)
- loss = nor_net(mean_b, sd_b, mean_a, sd_a)
- assert isinstance(loss, Tensor)
-
- ber_net = BernoulliKlNoArgs()
- probs_b = Tensor([0.3], dtype=dtype.float32)
- probs_a = Tensor([0.7], dtype=dtype.float32)
- loss = ber_net(probs_b, probs_a)
- assert isinstance(loss, Tensor)
-
-
-
- class NormalBernoulli(nn.Cell):
- """
- Test class: basic mean/sd function.
- """
- def __init__(self):
- super(NormalBernoulli, self).__init__()
- self.n = nn.Normal(3.0, 4.0, dtype=dtype.float32)
- self.b = nn.Bernoulli(0.5, dtype=dtype.int32)
-
- def construct(self):
- normal_mean = self.n('mean')
- normal_sd = self.n('sd')
- bernoulli_mean = self.b('mean')
- bernoulli_sd = self.b('sd')
- return normal_mean, normal_sd, bernoulli_mean, bernoulli_sd
-
- def test_bascis():
- """
- Test mean/sd functionality of Normal and Bernoulli.
- """
- net = NormalBernoulli()
- normal_mean, normal_sd, bernoulli_mean, bernoulli_sd = net()
- assert isinstance(normal_mean, Tensor)
- assert isinstance(normal_sd, Tensor)
- assert isinstance(bernoulli_mean, Tensor)
- assert isinstance(bernoulli_sd, Tensor)
|