|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test nn.Dense """
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
- from ..ut_filter import non_graph_engine
-
-
- def test_dense_none():
- with pytest.raises(TypeError):
- nn.Dense(3, 2, None, None)
-
-
- @non_graph_engine
- def test_dense_str_activation():
- dense = nn.Dense(1, 1, activation='relu')
- assert isinstance(dense.activation, nn.ReLU)
-
- input_data = Tensor(np.random.randint(0, 255, [1, 1]).astype(np.float32))
- dense(input_data)
-
-
- def test_dense_weight_error():
- dim_error = Tensor(np.array([[[0.1], [0.3], [0.6]], [[0.4], [0.5], [0.2]]]))
- with pytest.raises(ValueError):
- nn.Dense(3, 2, dim_error)
-
- shape_error = Tensor(np.array([[0.1, 0.3, 0.6], [0.4, 0.5, 0.2]]))
- with pytest.raises(ValueError):
- nn.Dense(2, 2, shape_error)
- with pytest.raises(ValueError):
- nn.Dense(3, 3, shape_error)
-
-
- def test_dense_bias_error():
- dim_error = Tensor(np.array([[0.5, 0.3]]))
- with pytest.raises(ValueError):
- nn.Dense(3, 2, bias_init=dim_error)
-
- shape_error = Tensor(np.array([0.5, 0.3, 0.4]))
- with pytest.raises(ValueError):
- nn.Dense(3, 2, bias_init=shape_error)
-
-
- def test_dense_channels_error():
- with pytest.raises(ValueError):
- nn.Dense(3, 0)
-
- with pytest.raises(ValueError):
- nn.Dense(-1, 2)
-
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self,
- input_channels,
- output_channels,
- weight='normal',
- bias='zeros',
- has_bias=True,
- activation=None):
- super(Net, self).__init__()
- self.dense = nn.Dense(input_channels,
- output_channels,
- weight,
- bias,
- has_bias,
- activation=activation)
-
- def construct(self, input_x):
- return self.dense(input_x)
-
-
- def test_compile():
- """ test_compile """
- # has bias
- weight = Tensor(np.random.randint(0, 255, [8, 64]).astype(np.float32))
- bias = Tensor(np.random.randint(0, 255, [8]).astype(np.float32))
- net = Net(64, 8, weight=weight, bias=bias)
- input_data = Tensor(np.random.randint(0, 255, [128, 64]).astype(np.float32))
- _executor.compile(net, input_data)
-
- # training
- net_train = Net(64, 8, weight=weight, bias=bias)
- net_train.set_train()
- _executor.compile(net_train, input_data)
-
-
- def test_compile_2():
- """ test_compile_2 """
- # no bias
- weight = Tensor(np.random.randint(0, 255, [8, 64]).astype(np.float32))
- net = Net(64, 8, weight=weight, has_bias=False)
- input_data = Tensor(np.random.randint(0, 255, [128, 64]).astype(np.float32))
- _executor.compile(net, input_data)
-
- # training
- net_train = Net(64, 8, weight=weight, has_bias=False)
- net_train.set_train()
- _executor.compile(net_train, input_data)
-
-
- def test_compile_3():
- """ test_compile_3 """
- # test for Graph mode
- # has bias
- context.set_context(mode=context.GRAPH_MODE)
- net = Net(128, 10)
- input_data = Tensor(np.random.randint(0, 255, [128, 128]).astype(np.float32))
- _executor.compile(net, input_data)
-
- # training
- net_train = Net(128, 10)
- net_train.set_train()
- _executor.compile(net_train, input_data)
-
-
- def test_compile_4():
- """ test_compile_4 """
- # test for Graph mode
- # no bias
- context.set_context(mode=context.GRAPH_MODE)
- net = Net(128, 10, has_bias=False)
- input_data = Tensor(np.random.randint(0, 255, [128, 128]).astype(np.float32))
- _executor.compile(net, input_data)
-
- # training
- net_train = Net(128, 10, has_bias=False)
- net_train.set_train()
- _executor.compile(net_train, input_data)
|