|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test conv """
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from ..ut_filter import non_graph_engine
-
- weight = Tensor(np.ones([2, 2]))
- in_channels = 3
- out_channels = 64
-
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self,
- cin,
- cout,
- kernel_size,
- stride=1,
- pad_mode="valid",
- padding=0,
- dilation=1,
- group=1,
- has_bias=True,
- weight_init='normal',
- bias_init='zeros'):
- super(Net, self).__init__()
- self.conv = nn.Conv2d(cin,
- cout,
- kernel_size,
- stride,
- pad_mode,
- padding,
- dilation,
- group,
- has_bias,
- weight_init,
- bias_init)
-
- def construct(self, input_x):
- return self.conv(input_x)
-
-
- @non_graph_engine
- def test_compile():
- net = Net(3, 64, 3, bias_init='zeros')
- input_data = Tensor(np.ones([1, 3, 16, 50], np.float32))
- net(input_data)
-
-
- def test_compile_nobias():
- net = Net(3, 64, 4, has_bias=False, weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_nobias2():
- net = Net(3, 64, (3, 5), has_bias=False, weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_pad_same():
- net = Net(3, 64, (3, 5), pad_mode="same", padding=0, has_bias=False, weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_pad_valid():
- net = Net(3, 64, (3, 5), pad_mode="valid", padding=0, has_bias=False, weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_pad_pad():
- net = Net(3, 64, (3, 5), pad_mode="pad", padding=1, has_bias=False, weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_conv_group_error():
- with pytest.raises(ValueError):
- nn.Conv2d(6, 8, 3, group=3)
- with pytest.raises(ValueError):
- nn.Conv2d(6, 9, 3, group=2)
-
-
- def test_conv_check():
- """ test_conv_check """
- with pytest.raises(ValueError):
- Net(3, 64, 4, pad_mode='sane')
-
- with pytest.raises(ValueError):
- Net(3, 0, 4)
-
- with pytest.raises(ValueError):
- Net(3, 1, 4, group=-1)
-
- with pytest.raises(ValueError):
- Net(3, 1, 4, dilation=-1)
-
- with pytest.raises(ValueError):
- Net(3, 1, kernel_size=-1)
-
- with pytest.raises(ValueError):
- Net(3, 1, 4, stride=0)
-
- with pytest.raises(ValueError):
- Net(0, 1, 4)
-
-
- class NetConv2dTranspose(nn.Cell):
- def __init__(self,
- cin,
- cout,
- kernel_size,
- stride=1,
- pad_mode="same",
- padding=0,
- dilation=1,
- group=1,
- has_bias=False,
- weight_init='normal',
- bias_init='zeros'):
- super(NetConv2dTranspose, self).__init__()
- self.conv = nn.Conv2dTranspose(cin,
- cout,
- kernel_size,
- stride,
- pad_mode,
- padding,
- dilation,
- group,
- has_bias,
- weight_init,
- bias_init)
-
- def construct(self, input_x):
- return self.conv(input_x)
-
-
- def test_compile_transpose():
- net = NetConv2dTranspose(3, 64, 4, weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_transpose_bias():
- net = NetConv2dTranspose(3, 64, 4, has_bias=True, weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_transpose_bias_init():
- bias = Tensor(np.random.randn(64).astype(np.float32))
- net = NetConv2dTranspose(3, 64, 4, has_bias=True, weight_init='normal', bias_init=bias)
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_transpose_valid():
- net = NetConv2dTranspose(3, 64, 4, pad_mode='valid', weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_transpose_pad():
- net = NetConv2dTranspose(3, 64, 4, pad_mode='pad', weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_transpose_stride2():
- net = NetConv2dTranspose(3, 64, 4, stride=2, weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_transpose_dilation_2():
- net = NetConv2dTranspose(3, 64, 4, stride=2, dilation=2, pad_mode='same', weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
-
-
- def test_compile_transpose_dilation_2_pad_mode_pad():
- net = NetConv2dTranspose(3, 64, 4, stride=2, dilation=2, pad_mode='pad', weight_init='normal')
- input_data = Tensor(np.ones([1, 3, 16, 50], dtype=np.float32))
- net(input_data)
|