|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- test CentralCrop
- """
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindspore.common.api import _executor
-
-
- class CentralCropNet(nn.Cell):
- def __init__(self, central_fraction):
- super(CentralCropNet, self).__init__()
- self.net = nn.CentralCrop(central_fraction)
-
- def construct(self, image):
- return self.net(image)
-
-
- def test_compile_3d_central_crop():
- central_fraction = 0.2
- net = CentralCropNet(central_fraction)
- image = Tensor(np.random.random((3, 16, 16)), mstype.float32)
- _executor.compile(net, image)
-
-
- def test_compile_4d_central_crop():
- central_fraction = 0.5
- net = CentralCropNet(central_fraction)
- image = Tensor(np.random.random((8, 3, 16, 16)), mstype.float32)
- _executor.compile(net, image)
-
-
- def test_central_fraction_bool():
- central_fraction = True
- with pytest.raises(TypeError):
- _ = CentralCropNet(central_fraction)
-
-
- def test_central_crop_central_fraction_negative():
- central_fraction = -1.0
- with pytest.raises(ValueError):
- _ = CentralCropNet(central_fraction)
-
-
- def test_central_fraction_zero():
- central_fraction = 0.0
- with pytest.raises(ValueError):
- _ = CentralCropNet(central_fraction)
-
-
- def test_central_crop_invalid_5d_input():
- invalid_shape = (8, 3, 16, 16, 1)
- invalid_image = Tensor(np.random.random(invalid_shape))
-
- net = CentralCropNet(central_fraction=0.5)
- with pytest.raises(ValueError):
- _executor.compile(net, invalid_image)
|