|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore.common import dtype as mstype
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, WithLossCell, ParameterUpdate
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
- self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
- self.matmul = P.MatMul()
- self.biasAdd = P.BiasAdd()
-
- def construct(self, x):
- x = self.biasAdd(self.matmul(x, self.weight), self.bias)
- return x
-
-
- def test_parameter_update_int32_and_tensor():
- """ test_parameter_update """
- net = Net()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Momentum(net.get_parameters(), Tensor(np.array([0.1, 0.01, 0.001]), mstype.float32), 0.001)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
-
- # compile train graph
- train_network.set_train()
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- _executor.compile(train_network, inputs, label)
-
- # test tensor
- param_lr = train_network.parameters_dict()['learning_rate']
- update_network = ParameterUpdate(param_lr)
- update_network.phase = 'update_param'
-
- input_lr = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32)
- _executor.compile(update_network, input_lr)
-
- # test int32
- param_step = train_network.parameters_dict()['global_step']
- update_global_step = ParameterUpdate(param_step)
-
- input_step = Tensor(np.array([1000]), mstype.int32)
- _executor.compile(update_global_step, input_step)
-
-
- def test_parameter_update_float32():
- """ test_parameter_update """
- net = Net()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Momentum(net.get_parameters(), 0.01, 0.001)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
-
- # compile train graph
- train_network.set_train()
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- _executor.compile(train_network, inputs, label)
-
- # construct and compile update graph
- param_lr = train_network.parameters_dict()['learning_rate']
- update_network = ParameterUpdate(param_lr)
- update_network.phase = 'update_param'
-
- input_lr = Tensor(0.0001, mstype.float32)
- _executor.compile(update_network, input_lr)
-
-
- def test_parameter_update_error():
- """ test_parameter_update """
- input_np = np.array([1])
-
- with pytest.raises(TypeError):
- ParameterUpdate(input_np)
|