|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import mindspore.common.dtype as mstype
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- # just a basic test with parallel random data op
- def test_randomdataset_basic1():
- logger.info("Test randomdataset basic 1")
-
- schema = ds.Schema()
- schema.add_column('image', de_type=mstype.uint8, shape=[2])
- schema.add_column('label', de_type=mstype.uint8, shape=[1])
-
- # apply dataset operations
- ds1 = ds.RandomDataset(schema=schema, total_rows=50, num_parallel_workers=4)
- ds1 = ds1.repeat(4)
-
- num_iter = 0
- for data in ds1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("{} image: {}".format(num_iter, data["image"]))
- logger.info("{} label: {}".format(num_iter, data["label"]))
- num_iter += 1
-
- logger.info("Number of data in ds1: {}".format(num_iter))
- assert num_iter == 200
- logger.info("Test randomdataset basic 1 complete")
-
-
- # Another simple test
- def test_randomdataset_basic2():
- logger.info("Test randomdataset basic 2")
-
- schema = ds.Schema()
- schema.add_column('image', de_type=mstype.uint8,
- shape=[640, 480, 3]) # 921600 bytes (a bit less than 1 MB per image)
- schema.add_column('label', de_type=mstype.uint8, shape=[1])
-
- # Make up 10 rows
- ds1 = ds.RandomDataset(schema=schema, total_rows=10, num_parallel_workers=1)
- ds1 = ds1.repeat(4)
-
- num_iter = 0
- for data in ds1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- # logger.info(data["image"])
- logger.info("printing the label: {}".format(data["label"]))
- num_iter += 1
-
- logger.info("Number of data in ds1: {}".format(num_iter))
- assert num_iter == 40
- logger.info("Test randomdataset basic 2 complete")
-
-
- # Another simple test
- def test_randomdataset_basic3():
- logger.info("Test randomdataset basic 3")
-
- # Make up 10 samples, but here even the schema is randomly created
- # The columns are named like this "c0", "c1", "c2" etc
- # But, we will use a tuple iterator instead of dict iterator so the column names
- # are not needed to iterate
- ds1 = ds.RandomDataset(total_rows=10, num_parallel_workers=1)
- ds1 = ds1.repeat(2)
-
- num_iter = 0
- for _ in ds1.create_tuple_iterator():
- num_iter += 1
-
- logger.info("Number of data in ds1: {}".format(num_iter))
- assert num_iter == 20
- logger.info("Test randomdataset basic 3 Complete")
-
- if __name__ == '__main__':
- test_randomdataset_basic1()
- test_randomdataset_basic2()
- test_randomdataset_basic3()
|