|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomCrop op in DE
- """
- import numpy as np
- import mindspore.dataset.transforms.vision.c_transforms as c_vision
- import mindspore.dataset.transforms.vision.py_transforms as py_vision
- import mindspore.dataset.transforms.vision.utils as mode
- import mindspore.dataset as ds
- from mindspore import log as logger
- from util import save_and_check_md5, visualize_list, config_get_set_seed, \
- config_get_set_num_parallel_workers
-
-
- GENERATE_GOLDEN = False
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_random_crop_op_c(plot=False):
- """
- Test RandomCrop Op in c transforms
- """
- logger.info("test_random_crop_op_c")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
- decode_op = c_vision.Decode()
-
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=random_crop_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=decode_op)
-
- image_cropped = []
- image = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image1 = item1["image"]
- image2 = item2["image"]
- image_cropped.append(image1)
- image.append(image2)
- if plot:
- visualize_list(image, image_cropped)
-
- def test_random_crop_op_py(plot=False):
- """
- Test RandomCrop op in py transforms
- """
- logger.info("test_random_crop_op_py")
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms1 = [
- py_vision.Decode(),
- py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
- py_vision.ToTensor()
- ]
- transform1 = py_vision.ComposeOp(transforms1)
- data1 = data1.map(input_columns=["image"], operations=transform1())
- # Second dataset
- # Second dataset for comparison
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms2 = [
- py_vision.Decode(),
- py_vision.ToTensor()
- ]
- transform2 = py_vision.ComposeOp(transforms2)
- data2 = data2.map(input_columns=["image"], operations=transform2())
-
- crop_images = []
- original_images = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- crop = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- crop_images.append(crop)
- original_images.append(original)
- if plot:
- visualize_list(original_images, crop_images)
-
- def test_random_crop_01_c():
- """
- Test RandomCrop op with c_transforms: size is a single integer, expected to pass
- """
- logger.info("test_random_crop_01_c")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: If size is an int, a square crop of size (size, size) is returned.
- random_crop_op = c_vision.RandomCrop(512)
- decode_op = c_vision.Decode()
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=random_crop_op)
-
- filename = "random_crop_01_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_01_py():
- """
- Test RandomCrop op with py_transforms: size is a single integer, expected to pass
- """
- logger.info("test_random_crop_01_py")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: If size is an int, a square crop of size (size, size) is returned.
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop(512),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- filename = "random_crop_01_py_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_02_c():
- """
- Test RandomCrop op with c_transforms: size is a list/tuple with length 2, expected to pass
- """
- logger.info("test_random_crop_02_c")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: If size is a sequence of length 2, it should be (height, width).
- random_crop_op = c_vision.RandomCrop([512, 375])
- decode_op = c_vision.Decode()
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=random_crop_op)
-
- filename = "random_crop_02_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_02_py():
- """
- Test RandomCrop op with py_transforms: size is a list/tuple with length 2, expected to pass
- """
- logger.info("test_random_crop_02_py")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: If size is a sequence of length 2, it should be (height, width).
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop([512, 375]),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- filename = "random_crop_02_py_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_03_c():
- """
- Test RandomCrop op with c_transforms: input image size == crop size, expected to pass
- """
- logger.info("test_random_crop_03_c")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The size of the image is 4032*2268
- random_crop_op = c_vision.RandomCrop([2268, 4032])
- decode_op = c_vision.Decode()
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=random_crop_op)
-
- filename = "random_crop_03_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_03_py():
- """
- Test RandomCrop op with py_transforms: input image size == crop size, expected to pass
- """
- logger.info("test_random_crop_03_py")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The size of the image is 4032*2268
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop([2268, 4032]),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- filename = "random_crop_03_py_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_04_c():
- """
- Test RandomCrop op with c_transforms: input image size < crop size, expected to fail
- """
- logger.info("test_random_crop_04_c")
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The size of the image is 4032*2268
- random_crop_op = c_vision.RandomCrop([2268, 4033])
- decode_op = c_vision.Decode()
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=random_crop_op)
- try:
- data.create_dict_iterator().get_next()
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Crop size is greater than the image dim" in str(e)
-
- def test_random_crop_04_py():
- """
- Test RandomCrop op with py_transforms:
- input image size < crop size, expected to fail
- """
- logger.info("test_random_crop_04_py")
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The size of the image is 4032*2268
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop([2268, 4033]),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
- try:
- data.create_dict_iterator().get_next()
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Crop size" in str(e)
-
- def test_random_crop_05_c():
- """
- Test RandomCrop op with c_transforms:
- input image size < crop size but pad_if_needed is enabled,
- expected to pass
- """
- logger.info("test_random_crop_05_c")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The size of the image is 4032*2268
- random_crop_op = c_vision.RandomCrop([2268, 4033], [200, 200, 200, 200], pad_if_needed=True)
- decode_op = c_vision.Decode()
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=random_crop_op)
-
- filename = "random_crop_05_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_05_py():
- """
- Test RandomCrop op with py_transforms:
- input image size < crop size but pad_if_needed is enabled,
- expected to pass
- """
- logger.info("test_random_crop_05_py")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The size of the image is 4032*2268
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop([2268, 4033], [200, 200, 200, 200], pad_if_needed=True),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- filename = "random_crop_05_py_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_06_c():
- """
- Test RandomCrop op with c_transforms:
- invalid size, expected to raise TypeError
- """
- logger.info("test_random_crop_06_c")
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- try:
- # Note: if size is neither an int nor a list of length 2, an exception will raise
- random_crop_op = c_vision.RandomCrop([512, 512, 375])
- decode_op = c_vision.Decode()
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=random_crop_op)
- except TypeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Size should be a single integer" in str(e)
-
- def test_random_crop_06_py():
- """
- Test RandomCrop op with py_transforms:
- invalid size, expected to raise TypeError
- """
- logger.info("test_random_crop_06_py")
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- try:
- # Note: if size is neither an int nor a list of length 2, an exception will raise
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop([512, 512, 375]),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
- except TypeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Size should be a single integer" in str(e)
-
- def test_random_crop_07_c():
- """
- Test RandomCrop op with c_transforms:
- padding_mode is Border.CONSTANT and fill_value is 255 (White),
- expected to pass
- """
- logger.info("test_random_crop_07_c")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The padding_mode is default as Border.CONSTANT and set filling color to be white.
- random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], fill_value=(255, 255, 255))
- decode_op = c_vision.Decode()
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=random_crop_op)
-
- filename = "random_crop_07_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_07_py():
- """
- Test RandomCrop op with py_transforms:
- padding_mode is Border.CONSTANT and fill_value is 255 (White),
- expected to pass
- """
- logger.info("test_random_crop_07_py")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The padding_mode is default as Border.CONSTANT and set filling color to be white.
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop(512, [200, 200, 200, 200], fill_value=(255, 255, 255)),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- filename = "random_crop_07_py_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_08_c():
- """
- Test RandomCrop op with c_transforms: padding_mode is Border.EDGE,
- expected to pass
- """
- logger.info("test_random_crop_08_c")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The padding_mode is Border.EDGE.
- random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE)
- decode_op = c_vision.Decode()
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=random_crop_op)
-
- filename = "random_crop_08_c_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_08_py():
- """
- Test RandomCrop op with py_transforms: padding_mode is Border.EDGE,
- expected to pass
- """
- logger.info("test_random_crop_08_py")
- original_seed = config_get_set_seed(0)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- # Note: The padding_mode is Border.EDGE.
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- filename = "random_crop_08_py_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore config setting
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
- def test_random_crop_09():
- """
- Test RandomCrop op: invalid type of input image (not PIL), expected to raise TypeError
- """
- logger.info("test_random_crop_09")
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms = [
- py_vision.Decode(),
- py_vision.ToTensor(),
- # Note: if input is not PIL image, TypeError will raise
- py_vision.RandomCrop(512)
- ]
- transform = py_vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
- try:
- data.create_dict_iterator().get_next()
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "should be PIL Image" in str(e)
-
- def test_random_crop_comp(plot=False):
- """
- Test RandomCrop and compare between python and c image augmentation
- """
- logger.info("Test RandomCrop with c_transform and py_transform comparison")
- cropped_size = 512
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- random_crop_op = c_vision.RandomCrop(cropped_size)
- decode_op = c_vision.Decode()
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=random_crop_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms = [
- py_vision.Decode(),
- py_vision.RandomCrop(cropped_size),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data2 = data2.map(input_columns=["image"], operations=transform())
-
- image_c_cropped = []
- image_py_cropped = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- c_image = item1["image"]
- py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_c_cropped.append(c_image)
- image_py_cropped.append(py_image)
- if plot:
- visualize_list(image_c_cropped, image_py_cropped, visualize_mode=2)
-
-
- if __name__ == "__main__":
- test_random_crop_01_c()
- test_random_crop_02_c()
- test_random_crop_03_c()
- test_random_crop_04_c()
- test_random_crop_05_c()
- test_random_crop_06_c()
- test_random_crop_07_c()
- test_random_crop_08_c()
- test_random_crop_01_py()
- test_random_crop_02_py()
- test_random_crop_03_py()
- test_random_crop_04_py()
- test_random_crop_05_py()
- test_random_crop_06_py()
- test_random_crop_07_py()
- test_random_crop_08_py()
- test_random_crop_09()
- test_random_crop_op_c(True)
- test_random_crop_op_py(True)
- test_random_crop_comp(True)
|