|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomChoice op in DE
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.py_transforms as py_vision
- from mindspore import log as logger
- from util import visualize_list, diff_mse
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_random_choice_op(plot=False):
- """
- Test RandomChoice in python transformations
- """
- logger.info("test_random_choice_op")
- # define map operations
- transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)]
- transforms1 = [
- py_vision.Decode(),
- py_vision.RandomChoice(transforms_list),
- py_vision.ToTensor()
- ]
- transform1 = py_vision.ComposeOp(transforms1)
-
- transforms2 = [
- py_vision.Decode(),
- py_vision.ToTensor()
- ]
- transform2 = py_vision.ComposeOp(transforms2)
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(input_columns=["image"], operations=transform1())
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=transform2())
-
- image_choice = []
- image_original = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_choice.append(image1)
- image_original.append(image2)
- if plot:
- visualize_list(image_original, image_choice)
-
-
- def test_random_choice_comp(plot=False):
- """
- Test RandomChoice and compare with single CenterCrop results
- """
- logger.info("test_random_choice_comp")
- # define map operations
- transforms_list = [py_vision.CenterCrop(64)]
- transforms1 = [
- py_vision.Decode(),
- py_vision.RandomChoice(transforms_list),
- py_vision.ToTensor()
- ]
- transform1 = py_vision.ComposeOp(transforms1)
-
- transforms2 = [
- py_vision.Decode(),
- py_vision.CenterCrop(64),
- py_vision.ToTensor()
- ]
- transform2 = py_vision.ComposeOp(transforms2)
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(input_columns=["image"], operations=transform1())
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=transform2())
-
- image_choice = []
- image_original = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_choice.append(image1)
- image_original.append(image2)
-
- mse = diff_mse(image1, image2)
- assert mse == 0
- if plot:
- visualize_list(image_original, image_choice)
-
-
- def test_random_choice_exception_random_crop_badinput():
- """
- Test RandomChoice: hit error in RandomCrop with greater crop size,
- expected to raise error
- """
- logger.info("test_random_choice_exception_random_crop_badinput")
- # define map operations
- # note: crop size[5000, 5000] > image size[4032, 2268]
- transforms_list = [py_vision.RandomCrop(5000)]
- transforms = [
- py_vision.Decode(),
- py_vision.RandomChoice(transforms_list),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data = data.map(input_columns=["image"], operations=transform())
- try:
- _ = data.create_dict_iterator().get_next()
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Crop size" in str(e)
-
-
- if __name__ == '__main__':
- test_random_choice_op(plot=True)
- test_random_choice_comp(plot=True)
- test_random_choice_exception_random_crop_badinput()
|