|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing Normalize op in DE
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as c_vision
- import mindspore.dataset.transforms.vision.py_transforms as py_vision
- from mindspore import log as logger
- from util import diff_mse, save_and_check_md5, visualize_image
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
- GENERATE_GOLDEN = False
-
-
- def normalize_np(image, mean, std):
- """
- Apply the normalization
- """
- # DE decodes the image in RGB by deafult, hence
- # the values here are in RGB
- image = np.array(image, np.float32)
- image = image - np.array(mean)
- image = image * (1.0 / np.array(std))
- return image
-
-
- def util_test_normalize(mean, std, op_type):
- """
- Utility function for testing Normalize. Input arguments are given by other tests
- """
- if op_type == "cpp":
- # define map operations
- decode_op = c_vision.Decode()
- normalize_op = c_vision.Normalize(mean, std)
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=normalize_op)
- elif op_type == "python":
- # define map operations
- transforms = [
- py_vision.Decode(),
- py_vision.ToTensor(),
- py_vision.Normalize(mean, std)
- ]
- transform = py_vision.ComposeOp(transforms)
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data = data.map(input_columns=["image"], operations=transform())
- else:
- raise ValueError("Wrong parameter value")
- return data
-
-
- def util_test_normalize_grayscale(num_output_channels, mean, std):
- """
- Utility function for testing Normalize. Input arguments are given by other tests
- """
- transforms = [
- py_vision.Decode(),
- py_vision.Grayscale(num_output_channels),
- py_vision.ToTensor(),
- py_vision.Normalize(mean, std)
- ]
- transform = py_vision.ComposeOp(transforms)
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data = data.map(input_columns=["image"], operations=transform())
- return data
-
-
- def test_normalize_op_c(plot=False):
- """
- Test Normalize in cpp transformations
- """
- logger.info("Test Normalize in cpp")
- mean = [121.0, 115.0, 100.0]
- std = [70.0, 68.0, 71.0]
- # define map operations
- decode_op = c_vision.Decode()
- normalize_op = c_vision.Normalize(mean, std)
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=normalize_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=decode_op)
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image_de_normalized = item1["image"]
- image_original = item2["image"]
- image_np_normalized = normalize_np(image_original, mean, std)
- mse = diff_mse(image_de_normalized, image_np_normalized)
- logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
- assert mse < 0.01
- if plot:
- visualize_image(image_original, image_de_normalized, mse, image_np_normalized)
- num_iter += 1
-
-
- def test_normalize_op_py(plot=False):
- """
- Test Normalize in python transformations
- """
- logger.info("Test Normalize in python")
- mean = [0.475, 0.45, 0.392]
- std = [0.275, 0.267, 0.278]
- # define map operations
- transforms = [
- py_vision.Decode(),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- normalize_op = py_vision.Normalize(mean, std)
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(input_columns=["image"], operations=transform())
- data1 = data1.map(input_columns=["image"], operations=normalize_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=transform())
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image_de_normalized = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_np_normalized = (normalize_np(item2["image"].transpose(1, 2, 0), mean, std) * 255).astype(np.uint8)
- image_original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- mse = diff_mse(image_de_normalized, image_np_normalized)
- logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
- assert mse < 0.01
- if plot:
- visualize_image(image_original, image_de_normalized, mse, image_np_normalized)
- num_iter += 1
-
-
- def test_decode_op():
- """
- Test Decode op
- """
- logger.info("Test Decode")
-
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
- shuffle=False)
-
- # define map operations
- decode_op = c_vision.Decode()
-
- # apply map operations on images
- data1 = data1.map(input_columns=["image"], operations=decode_op)
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- logger.info("Looping inside iterator {}".format(num_iter))
- _ = item["image"]
- num_iter += 1
-
-
- def test_decode_normalize_op():
- """
- Test Decode op followed by Normalize op
- """
- logger.info("Test [Decode, Normalize] in one Map")
-
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
- shuffle=False)
-
- # define map operations
- decode_op = c_vision.Decode()
- normalize_op = c_vision.Normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0])
-
- # apply map operations on images
- data1 = data1.map(input_columns=["image"], operations=[decode_op, normalize_op])
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- logger.info("Looping inside iterator {}".format(num_iter))
- _ = item["image"]
- num_iter += 1
-
-
- def test_normalize_md5_01():
- """
- Test Normalize with md5 check: valid mean and std
- expected to pass
- """
- logger.info("test_normalize_md5_01")
- data_c = util_test_normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0], "cpp")
- data_py = util_test_normalize([0.475, 0.45, 0.392], [0.275, 0.267, 0.278], "python")
-
- # check results with md5 comparison
- filename1 = "normalize_01_c_result.npz"
- filename2 = "normalize_01_py_result.npz"
- save_and_check_md5(data_c, filename1, generate_golden=GENERATE_GOLDEN)
- save_and_check_md5(data_py, filename2, generate_golden=GENERATE_GOLDEN)
-
-
- def test_normalize_md5_02():
- """
- Test Normalize with md5 check: len(mean)=len(std)=1 with RGB images
- expected to pass
- """
- logger.info("test_normalize_md5_02")
- data_py = util_test_normalize([0.475], [0.275], "python")
-
- # check results with md5 comparison
- filename2 = "normalize_02_py_result.npz"
- save_and_check_md5(data_py, filename2, generate_golden=GENERATE_GOLDEN)
-
-
- def test_normalize_exception_unequal_size_c():
- """
- Test Normalize in c transformation: len(mean) != len(std)
- expected to raise ValueError
- """
- logger.info("test_normalize_exception_unequal_size_c")
- try:
- _ = c_vision.Normalize([100, 250, 125], [50, 50, 75, 75])
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Length of mean and std must be equal"
-
-
- def test_normalize_exception_unequal_size_py():
- """
- Test Normalize in python transformation: len(mean) != len(std)
- expected to raise ValueError
- """
- logger.info("test_normalize_exception_unequal_size_py")
- try:
- _ = py_vision.Normalize([0.50, 0.30, 0.75], [0.18, 0.32, 0.71, 0.72])
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Length of mean and std must be equal"
-
-
- def test_normalize_exception_invalid_size_py():
- """
- Test Normalize in python transformation: len(mean)=len(std)=2
- expected to raise RuntimeError
- """
- logger.info("test_normalize_exception_invalid_size_py")
- data = util_test_normalize([0.75, 0.25], [0.18, 0.32], "python")
- try:
- _ = data.create_dict_iterator().get_next()
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Length of mean and std must both be 1 or" in str(e)
-
-
- def test_normalize_exception_invalid_range_py():
- """
- Test Normalize in python transformation: value is not in range [0,1]
- expected to raise ValueError
- """
- logger.info("test_normalize_exception_invalid_range_py")
- try:
- _ = py_vision.Normalize([0.75, 1.25, 0.5], [0.1, 0.18, 1.32])
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Input mean_value is not within the required interval of (0.0 to 1.0)." in str(e)
-
-
- def test_normalize_grayscale_md5_01():
- """
- Test Normalize with md5 check: len(mean)=len(std)=1 with 1 channel grayscale images
- expected to pass
- """
- logger.info("test_normalize_grayscale_md5_01")
- data = util_test_normalize_grayscale(1, [0.5], [0.175])
- # check results with md5 comparison
- filename = "normalize_03_py_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_normalize_grayscale_md5_02():
- """
- Test Normalize with md5 check: len(mean)=len(std)=3 with 3 channel grayscale images
- expected to pass
- """
- logger.info("test_normalize_grayscale_md5_02")
- data = util_test_normalize_grayscale(3, [0.5, 0.5, 0.5], [0.175, 0.235, 0.512])
- # check results with md5 comparison
- filename = "normalize_04_py_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_normalize_grayscale_exception():
- """
- Test Normalize: len(mean)=len(std)=3 with 1 channel grayscale images
- expected to raise RuntimeError
- """
- logger.info("test_normalize_grayscale_exception")
- try:
- _ = util_test_normalize_grayscale(1, [0.5, 0.5, 0.5], [0.175, 0.235, 0.512])
- except RuntimeError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert "Input is not within the required range" in str(e)
-
-
- if __name__ == "__main__":
- test_decode_op()
- test_decode_normalize_op()
- test_normalize_op_c(plot=True)
- test_normalize_op_py(plot=True)
- test_normalize_md5_01()
- test_normalize_md5_02()
- test_normalize_exception_unequal_size_c()
- test_normalize_exception_unequal_size_py()
- test_normalize_exception_invalid_size_py()
- test_normalize_exception_invalid_range_py()
- test_normalize_grayscale_md5_01()
- test_normalize_grayscale_md5_02()
- test_normalize_grayscale_exception()
|