|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- This is the test module for mindrecord
- """
- import os
- import pytest
- import numpy as np
-
- import mindspore.dataset as ds
- from mindspore import log as logger
- from mindspore.dataset.text import to_str
- from mindspore.mindrecord import FileWriter
-
- FILES_NUM = 4
- CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
- CV_DIR_NAME = "../data/mindrecord/testImageNetData"
-
-
- @pytest.fixture
- def add_and_remove_cv_file():
- """add/remove cv file"""
- paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
- for x in range(FILES_NUM)]
- for x in paths:
- if os.path.exists("{}".format(x)):
- os.remove("{}".format(x))
- if os.path.exists("{}.db".format(x)):
- os.remove("{}.db".format(x))
- writer = FileWriter(CV_FILE_NAME, FILES_NUM)
- data = get_data(CV_DIR_NAME, True)
- cv_schema_json = {"id": {"type": "int32"},
- "file_name": {"type": "string"},
- "label": {"type": "int32"},
- "data": {"type": "bytes"}}
- writer.add_schema(cv_schema_json, "img_schema")
- writer.add_index(["file_name", "label"])
- writer.write_raw_data(data)
- writer.commit()
- yield "yield_cv_data"
- for x in paths:
- os.remove("{}".format(x))
- os.remove("{}.db".format(x))
-
-
- def test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- num_readers = 4
- sampler = ds.PKSampler(2)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", None, num_readers,
- sampler=sampler)
-
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- item[file_name]: \
- {}------------------------".format(to_str(item["file_name"])))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
-
-
- def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- sampler = ds.PKSampler(2)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
-
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- item[data]: \
- {}------------------------".format(item["data"][:10]))
- logger.info("-------------- item[file_name]: \
- {}------------------------".format(to_str(item["file_name"])))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
-
-
- def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- sampler = ds.PKSampler(3, None, True)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
-
- assert data_set.get_dataset_size() == 9
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- item[file_name]: \
- {}------------------------".format(to_str(item["file_name"])))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
-
-
- def test_cv_minddataset_pk_sample_out_of_range(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- sampler = ds.PKSampler(5, None, True)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 15
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- item[file_name]: \
- {}------------------------".format(to_str(item["file_name"])))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
-
-
- def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- indices = [1, 2, 3, 5, 7]
- sampler = ds.SubsetRandomSampler(indices)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 5
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 5
-
-
- def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- indices = [1, 2, 2, 5, 7, 9]
- sampler = ds.SubsetRandomSampler(indices)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 6
-
-
- def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- indices = []
- sampler = ds.SubsetRandomSampler(indices)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 0
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 0
-
-
- def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- indices = [1, 2, 4, 11, 13]
- sampler = ds.SubsetRandomSampler(indices)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 5
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 5
-
-
- def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- indices = [1, 2, 4, -1, -2]
- sampler = ds.SubsetRandomSampler(indices)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 5
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 5
-
-
- def test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file):
- data = get_data(CV_DIR_NAME, True)
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- sampler = ds.RandomSampler()
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 10
- num_iter = 0
- new_dataset = []
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- new_dataset.append(item['file_name'])
- assert num_iter == 10
- assert new_dataset != [x['file_name'] for x in data]
-
- def test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file):
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- sampler = ds.RandomSampler()
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 10
- ds1 = data_set.repeat(3)
- num_iter = 0
- epoch1_dataset = []
- epoch2_dataset = []
- epoch3_dataset = []
- for item in ds1.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- if num_iter <= 10:
- epoch1_dataset.append(item['file_name'])
- elif num_iter <= 20:
- epoch2_dataset.append(item['file_name'])
- else:
- epoch3_dataset.append(item['file_name'])
- assert num_iter == 30
- assert epoch1_dataset not in (epoch2_dataset, epoch3_dataset)
- assert epoch2_dataset not in (epoch1_dataset, epoch3_dataset)
- assert epoch3_dataset not in (epoch1_dataset, epoch2_dataset)
-
- def test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file):
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- sampler = ds.RandomSampler(replacement=True, num_samples=5)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 5
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 5
-
-
- def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
- data = get_data(CV_DIR_NAME, True)
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- sampler = ds.SequentialSampler(1, 4)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- assert data_set.get_dataset_size() == 4
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- assert item['file_name'] == np.array(
- data[num_iter+1]['file_name'], dtype='S')
- num_iter += 1
- assert num_iter == 4
-
-
- def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
- data = get_data(CV_DIR_NAME, True)
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- sampler = ds.SequentialSampler(2, 10)
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- sampler=sampler)
- dataset_size = data_set.get_dataset_size()
- assert dataset_size == 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info(
- "-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- assert item['file_name'] == np.array(
- data[(num_iter + 2) % dataset_size]['file_name'], dtype='S')
- num_iter += 1
- assert num_iter == 10
-
-
- def test_cv_minddataset_split_basic(add_and_remove_cv_file):
- data = get_data(CV_DIR_NAME, True)
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
- num_readers, shuffle=False)
- d1, d2 = d.split([8, 2], randomize=False)
- assert d.get_dataset_size() == 10
- assert d1.get_dataset_size() == 8
- assert d2.get_dataset_size() == 2
- num_iter = 0
- for item in d1.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- assert item['file_name'] == np.array(data[num_iter]['file_name'],
- dtype='S')
- num_iter += 1
- assert num_iter == 8
- num_iter = 0
- for item in d2.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- assert item['file_name'] == np.array(data[num_iter + 8]['file_name'],
- dtype='S')
- num_iter += 1
- assert num_iter == 2
-
-
- def test_cv_minddataset_split_exact_percent(add_and_remove_cv_file):
- data = get_data(CV_DIR_NAME, True)
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
- num_readers, shuffle=False)
- d1, d2 = d.split([0.8, 0.2], randomize=False)
- assert d.get_dataset_size() == 10
- assert d1.get_dataset_size() == 8
- assert d2.get_dataset_size() == 2
- num_iter = 0
- for item in d1.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- assert item['file_name'] == np.array(
- data[num_iter]['file_name'], dtype='S')
- num_iter += 1
- assert num_iter == 8
- num_iter = 0
- for item in d2.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- assert item['file_name'] == np.array(data[num_iter + 8]['file_name'],
- dtype='S')
- num_iter += 1
- assert num_iter == 2
-
-
- def test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file):
- data = get_data(CV_DIR_NAME, True)
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
- num_readers, shuffle=False)
- d1, d2 = d.split([0.41, 0.59], randomize=False)
- assert d.get_dataset_size() == 10
- assert d1.get_dataset_size() == 4
- assert d2.get_dataset_size() == 6
- num_iter = 0
- for item in d1.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- assert item['file_name'] == np.array(
- data[num_iter]['file_name'], dtype='S')
- num_iter += 1
- assert num_iter == 4
- num_iter = 0
- for item in d2.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- assert item['file_name'] == np.array(data[num_iter + 4]['file_name'],
- dtype='S')
- num_iter += 1
- assert num_iter == 6
-
-
- def test_cv_minddataset_split_deterministic(add_and_remove_cv_file):
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
- num_readers, shuffle=False)
- # should set seed to avoid data overlap
- ds.config.set_seed(111)
- d1, d2 = d.split([0.8, 0.2])
- assert d.get_dataset_size() == 10
- assert d1.get_dataset_size() == 8
- assert d2.get_dataset_size() == 2
-
- d1_dataset = []
- d2_dataset = []
- num_iter = 0
- for item in d1.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- d1_dataset.append(item['file_name'])
- num_iter += 1
- assert num_iter == 8
- num_iter = 0
- for item in d2.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- d2_dataset.append(item['file_name'])
- num_iter += 1
- assert num_iter == 2
- inter_dataset = [x for x in d1_dataset if x in d2_dataset]
- assert inter_dataset == [] # intersection of d1 and d2
-
-
- def test_cv_minddataset_split_sharding(add_and_remove_cv_file):
- data = get_data(CV_DIR_NAME, True)
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
- num_readers, shuffle=False)
- # should set seed to avoid data overlap
- ds.config.set_seed(111)
- d1, d2 = d.split([0.8, 0.2])
- assert d.get_dataset_size() == 10
- assert d1.get_dataset_size() == 8
- assert d2.get_dataset_size() == 2
- distributed_sampler = ds.DistributedSampler(2, 0)
- d1.use_sampler(distributed_sampler)
- assert d1.get_dataset_size() == 4
-
- num_iter = 0
- d1_shard1 = []
- for item in d1.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- d1_shard1.append(item['file_name'])
- assert num_iter == 4
- assert d1_shard1 != [x['file_name'] for x in data[0:4]]
-
- distributed_sampler = ds.DistributedSampler(2, 1)
- d1.use_sampler(distributed_sampler)
- assert d1.get_dataset_size() == 4
-
- d1s = d1.repeat(3)
- epoch1_dataset = []
- epoch2_dataset = []
- epoch3_dataset = []
- num_iter = 0
- for item in d1s.create_dict_iterator():
- logger.info(
- "-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info(
- "-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info(
- "-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- if num_iter <= 4:
- epoch1_dataset.append(item['file_name'])
- elif num_iter <= 8:
- epoch2_dataset.append(item['file_name'])
- else:
- epoch3_dataset.append(item['file_name'])
- assert len(epoch1_dataset) == 4
- assert len(epoch2_dataset) == 4
- assert len(epoch3_dataset) == 4
- inter_dataset = [x for x in d1_shard1 if x in epoch1_dataset]
- assert inter_dataset == [] # intersection of d1's shard1 and d1's shard2
- assert epoch1_dataset not in (epoch2_dataset, epoch3_dataset)
- assert epoch2_dataset not in (epoch1_dataset, epoch3_dataset)
- assert epoch3_dataset not in (epoch1_dataset, epoch2_dataset)
-
- epoch1_dataset.sort()
- epoch2_dataset.sort()
- epoch3_dataset.sort()
- assert epoch1_dataset != epoch2_dataset
- assert epoch2_dataset != epoch3_dataset
- assert epoch3_dataset != epoch1_dataset
-
-
- def get_data(dir_name, sampler=False):
- """
- usage: get data from imagenet dataset
- params:
- dir_name: directory containing folder images and annotation information
-
- """
- if not os.path.isdir(dir_name):
- raise IOError("Directory {} not exists".format(dir_name))
- img_dir = os.path.join(dir_name, "images")
- if sampler:
- ann_file = os.path.join(dir_name, "annotation_sampler.txt")
- else:
- ann_file = os.path.join(dir_name, "annotation.txt")
- with open(ann_file, "r") as file_reader:
- lines = file_reader.readlines()
-
- data_list = []
- for i, line in enumerate(lines):
- try:
- filename, label = line.split(",")
- label = label.strip("\n")
- with open(os.path.join(img_dir, filename), "rb") as file_reader:
- img = file_reader.read()
- data_json = {"id": i,
- "file_name": filename,
- "data": img,
- "label": int(label)}
- data_list.append(data_json)
- except FileNotFoundError:
- continue
- return data_list
|