|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing from_dataset in mindspore.dataset
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.text as text
-
-
- def test_demo_basic_from_dataset():
- """ this is a tutorial on how from_dataset should be used in a normal use case"""
- data = ds.TextFileDataset("../data/dataset/testVocab/words.txt", shuffle=False)
- vocab = text.Vocab.from_dataset(data, "text", freq_range=None, top_k=None,
- special_tokens=["<pad>", "<unk>"],
- special_first=True)
- data = data.map(input_columns=["text"], operations=text.Lookup(vocab, "<unk>"))
- res = []
- for d in data.create_dict_iterator():
- res.append(d["text"].item())
- assert res == [4, 5, 3, 6, 7, 2], res
-
-
- def test_demo_basic_from_dataset_with_tokenizer():
- """ this is a tutorial on how from_dataset should be used in a normal use case with tokenizer"""
- data = ds.TextFileDataset("../data/dataset/testTokenizerData/1.txt", shuffle=False)
- data = data.map(input_columns=["text"], operations=text.UnicodeCharTokenizer())
- vocab = text.Vocab.from_dataset(data, None, freq_range=None, top_k=None, special_tokens=["<pad>", "<unk>"],
- special_first=True)
- data = data.map(input_columns=["text"], operations=text.Lookup(vocab, "<unk>"))
- res = []
- for d in data.create_dict_iterator():
- res.append(list(d["text"]))
- assert res == [[13, 3, 7, 14, 9, 17, 3, 2, 19, 9, 2, 11, 3, 4, 16, 4, 8, 6, 5], [21, 20, 10, 25, 23, 26],
- [24, 22, 10, 12, 8, 6, 7, 4, 18, 15, 5], [2, 2]]
-
-
- def test_from_dataset():
- """ test build vocab with generator dataset """
-
- def gen_corpus():
- # key: word, value: number of occurrences, reason for using letters is so their order is apparent
- corpus = {"Z": 4, "Y": 4, "X": 4, "W": 3, "U": 3, "V": 2, "T": 1}
- for k, v in corpus.items():
- yield (np.array([k] * v, dtype='S'),)
-
- def test_config(freq_range, top_k):
- corpus_dataset = ds.GeneratorDataset(gen_corpus, column_names=["text"])
- vocab = text.Vocab.from_dataset(corpus_dataset, None, freq_range, top_k, special_tokens=["<pad>", "<unk>"],
- special_first=True)
- corpus_dataset = corpus_dataset.map(input_columns="text", operations=text.Lookup(vocab, "<unk>"))
- res = []
- for d in corpus_dataset.create_dict_iterator():
- res.append(list(d["text"]))
- return res
-
- # take words whose frequency is with in [3,4] order them alphabetically for words with the same frequency
- test1_res = test_config(freq_range=(3, 4), top_k=4)
- assert test1_res == [[4, 4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2], [1, 1, 1], [5, 5, 5], [1, 1], [1]], str(test1_res)
-
- # test words with frequency range [2,inf], only the last word will be filtered out
- test2_res = test_config((2, None), None)
- assert test2_res == [[4, 4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2], [6, 6, 6], [5, 5, 5], [7, 7], [1]], str(test2_res)
-
- # test filter only by top_k
- test3_res = test_config(None, 4)
- assert test3_res == [[4, 4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2], [1, 1, 1], [5, 5, 5], [1, 1], [1]], str(test3_res)
-
- # test filtering out the most frequent
- test4_res = test_config((None, 3), 100)
- assert test4_res == [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [3, 3, 3], [2, 2, 2], [4, 4], [5]], str(test4_res)
-
- # test top_k == 1
- test5_res = test_config(None, 1)
- assert test5_res == [[1, 1, 1, 1], [1, 1, 1, 1], [2, 2, 2, 2], [1, 1, 1], [1, 1, 1], [1, 1], [1]], str(test5_res)
-
- # test min_frequency == max_frequency
- test6_res = test_config((4, 4), None)
- assert test6_res == [[4, 4, 4, 4], [3, 3, 3, 3], [2, 2, 2, 2], [1, 1, 1], [1, 1, 1], [1, 1], [1]], str(test6_res)
-
-
- def test_from_dataset_special_token():
- """ test build vocab with generator dataset """
-
- def gen_corpus():
- # key: word, value: number of occurrences, reason for using letters is so their order is apparent
- corpus = {"D": 1, "C": 1, "B": 1, "A": 1}
- for k, v in corpus.items():
- yield (np.array([k] * v, dtype='S'),)
-
- def gen_input(texts):
- for word in texts.split(" "):
- yield (np.array(word, dtype='S'),)
-
- def test_config(texts, top_k, special_tokens, special_first):
- corpus_dataset = ds.GeneratorDataset(gen_corpus, column_names=["text"])
- vocab = text.Vocab.from_dataset(corpus_dataset, None, None, top_k, special_tokens, special_first)
- data = ds.GeneratorDataset(gen_input(texts), column_names=["text"])
- data = data.map(input_columns="text", operations=text.Lookup(vocab, "<unk>"))
- res = []
- for d in data.create_dict_iterator():
- res.append(d["text"].item())
- return res
-
- # test special tokens are inserted before
- assert test_config("A B C D <pad> <unk>", 4, ["<pad>", "<unk>"], True) == [2, 3, 4, 5, 0, 1]
- # test special tokens are inserted after
- assert test_config("A B C D <pad> <unk>", 4, ["<pad>", "<unk>"], False) == [0, 1, 2, 3, 4, 5]
-
-
- def test_from_dataset_exceptions():
- """ test various exceptions during that are checked in validator """
-
- def test_config(columns, freq_range, top_k, s):
- try:
- data = ds.TextFileDataset("../data/dataset/testVocab/words.txt", shuffle=False)
- vocab = text.Vocab.from_dataset(data, columns, freq_range, top_k)
- assert isinstance(vocab.text.Vocab)
- except (TypeError, ValueError) as e:
- assert s in str(e), str(e)
-
- test_config("text", (), 1, "freq_range needs to be a tuple of 2 integers or an int and a None.")
- test_config("text", (2, 3), 1.2345,
- "Argument top_k with value 1.2345 is not of type (<class 'int'>, <class 'NoneType'>)")
- test_config(23, (2, 3), 1.2345, "Argument col[0] with value 23 is not of type (<class 'str'>,)")
- test_config("text", (100, 1), 12, "frequency range [a,b] should be 0 <= a <= b (a,b are inclusive)")
- test_config("text", (2, 3), 0, "top_k must be greater than 0")
- test_config([123], (2, 3), -1, "top_k must be greater than 0")
-
-
- if __name__ == '__main__':
- test_demo_basic_from_dataset()
- test_from_dataset()
- test_from_dataset_exceptions()
- test_demo_basic_from_dataset_with_tokenizer()
- test_from_dataset_special_token()
|