|
- # Copyright 2020 Huawei Technologies Co., Ltd.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Testing FiveCrop in DE
- """
- import pytest
- import numpy as np
-
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.py_transforms as vision
- from mindspore import log as logger
- from util import visualize_list, save_and_check_md5
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
- GENERATE_GOLDEN = False
-
- def test_five_crop_op(plot=False):
- """
- Test FiveCrop
- """
- logger.info("test_five_crop")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms_1 = [
- vision.Decode(),
- vision.ToTensor(),
- ]
- transform_1 = vision.ComposeOp(transforms_1)
- data1 = data1.map(input_columns=["image"], operations=transform_1())
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms_2 = [
- vision.Decode(),
- vision.FiveCrop(200),
- lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 5 images
- ]
- transform_2 = vision.ComposeOp(transforms_2)
- data2 = data2.map(input_columns=["image"], operations=transform_2())
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- num_iter += 1
- image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_2 = item2["image"]
-
- logger.info("shape of image_1: {}".format(image_1.shape))
- logger.info("shape of image_2: {}".format(image_2.shape))
-
- logger.info("dtype of image_1: {}".format(image_1.dtype))
- logger.info("dtype of image_2: {}".format(image_2.dtype))
- if plot:
- visualize_list(np.array([image_1]*5), (image_2 * 255).astype(np.uint8).transpose(0, 2, 3, 1))
-
- # The output data should be of a 4D tensor shape, a stack of 5 images.
- assert len(image_2.shape) == 4
- assert image_2.shape[0] == 5
-
-
- def test_five_crop_error_msg():
- """
- Test FiveCrop error message.
- """
- logger.info("test_five_crop_error_msg")
-
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms = [
- vision.Decode(),
- vision.FiveCrop(200),
- vision.ToTensor()
- ]
- transform = vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
-
- with pytest.raises(RuntimeError) as info:
- data.create_tuple_iterator().__next__()
- error_msg = "TypeError: img should be PIL Image or Numpy array. Got <class 'tuple'>"
-
- # error msg comes from ToTensor()
- assert error_msg in str(info.value)
-
-
- def test_five_crop_md5():
- """
- Test FiveCrop with md5 check
- """
- logger.info("test_five_crop_md5")
-
- # First dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms = [
- vision.Decode(),
- vision.FiveCrop(100),
- lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 5 images
- ]
- transform = vision.ComposeOp(transforms)
- data = data.map(input_columns=["image"], operations=transform())
- # Compare with expected md5 from images
- filename = "five_crop_01_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
-
- if __name__ == "__main__":
- test_five_crop_op(plot=True)
- test_five_crop_error_msg()
- test_five_crop_md5()
|