|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing CutOut op in DE
- """
- import numpy as np
-
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as c
- import mindspore.dataset.transforms.vision.py_transforms as f
- from mindspore import log as logger
- from util import visualize_image, visualize_list, diff_mse, save_and_check_md5, \
- config_get_set_seed, config_get_set_num_parallel_workers
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
- GENERATE_GOLDEN = False
-
- def test_cut_out_op(plot=False):
- """
- Test Cutout
- """
- logger.info("test_cut_out")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
-
- transforms_1 = [
- f.Decode(),
- f.ToTensor(),
- f.RandomErasing(value='random')
- ]
- transform_1 = f.ComposeOp(transforms_1)
- data1 = data1.map(input_columns=["image"], operations=transform_1())
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = c.Decode()
- cut_out_op = c.CutOut(80)
-
- transforms_2 = [
- decode_op,
- cut_out_op
- ]
-
- data2 = data2.map(input_columns=["image"], operations=transforms_2)
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- num_iter += 1
- image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- # C image doesn't require transpose
- image_2 = item2["image"]
-
- logger.info("shape of image_1: {}".format(image_1.shape))
- logger.info("shape of image_2: {}".format(image_2.shape))
-
- logger.info("dtype of image_1: {}".format(image_1.dtype))
- logger.info("dtype of image_2: {}".format(image_2.dtype))
-
- mse = diff_mse(image_1, image_2)
- if plot:
- visualize_image(image_1, image_2, mse)
-
-
- def test_cut_out_op_multicut(plot=False):
- """
- Test Cutout
- """
- logger.info("test_cut_out")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
-
- transforms_1 = [
- f.Decode(),
- f.ToTensor(),
- ]
- transform_1 = f.ComposeOp(transforms_1)
- data1 = data1.map(input_columns=["image"], operations=transform_1())
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = c.Decode()
- cut_out_op = c.CutOut(80, num_patches=10)
-
- transforms_2 = [
- decode_op,
- cut_out_op
- ]
-
- data2 = data2.map(input_columns=["image"], operations=transforms_2)
-
- num_iter = 0
- image_list_1, image_list_2 = [], []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- num_iter += 1
- image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- # C image doesn't require transpose
- image_2 = item2["image"]
- image_list_1.append(image_1)
- image_list_2.append(image_2)
-
- logger.info("shape of image_1: {}".format(image_1.shape))
- logger.info("shape of image_2: {}".format(image_2.shape))
-
- logger.info("dtype of image_1: {}".format(image_1.dtype))
- logger.info("dtype of image_2: {}".format(image_2.dtype))
- if plot:
- visualize_list(image_list_1, image_list_2)
-
-
- def test_cut_out_md5():
- """
- Test Cutout with md5 check
- """
- logger.info("test_cut_out_md5")
- original_seed = config_get_set_seed(2)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = c.Decode()
- cut_out_op = c.CutOut(100)
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=cut_out_op)
-
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms = [
- f.Decode(),
- f.ToTensor(),
- f.Cutout(100)
- ]
- transform = f.ComposeOp(transforms)
- data2 = data2.map(input_columns=["image"], operations=transform())
-
- # Compare with expected md5 from images
- filename1 = "cut_out_01_c_result.npz"
- save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
- filename2 = "cut_out_01_py_result.npz"
- save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
-
- # Restore config
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
-
- def test_cut_out_comp(plot=False):
- """
- Test Cutout with c++ and python op comparison
- """
- logger.info("test_cut_out_comp")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
-
- transforms_1 = [
- f.Decode(),
- f.ToTensor(),
- f.Cutout(200)
- ]
- transform_1 = f.ComposeOp(transforms_1)
- data1 = data1.map(input_columns=["image"], operations=transform_1())
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
-
- transforms_2 = [
- c.Decode(),
- c.CutOut(200)
- ]
-
- data2 = data2.map(input_columns=["image"], operations=transforms_2)
-
- num_iter = 0
- image_list_1, image_list_2 = [], []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- num_iter += 1
- image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- # C image doesn't require transpose
- image_2 = item2["image"]
- image_list_1.append(image_1)
- image_list_2.append(image_2)
-
- logger.info("shape of image_1: {}".format(image_1.shape))
- logger.info("shape of image_2: {}".format(image_2.shape))
-
- logger.info("dtype of image_1: {}".format(image_1.dtype))
- logger.info("dtype of image_2: {}".format(image_2.dtype))
- if plot:
- visualize_list(image_list_1, image_list_2, visualize_mode=2)
-
-
- if __name__ == "__main__":
- test_cut_out_op(plot=True)
- test_cut_out_op_multicut(plot=True)
- test_cut_out_md5()
- test_cut_out_comp(plot=True)
|