|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing CenterCrop op in DE
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as vision
- import mindspore.dataset.transforms.vision.py_transforms as py_vision
- from mindspore import log as logger
- from util import diff_mse, visualize_list, save_and_check_md5
-
- GENERATE_GOLDEN = False
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_center_crop_op(height=375, width=375, plot=False):
- """
- Test CenterCrop
- """
- logger.info("Test CenterCrop")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
- decode_op = vision.Decode()
- # 3 images [375, 500] [600, 500] [512, 512]
- center_crop_op = vision.CenterCrop([height, width])
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=center_crop_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
- data2 = data2.map(input_columns=["image"], operations=decode_op)
-
- image_cropped = []
- image = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image_cropped.append(item1["image"].copy())
- image.append(item2["image"].copy())
- if plot:
- visualize_list(image, image_cropped)
-
-
- def test_center_crop_md5(height=375, width=375):
- """
- Test CenterCrop
- """
- logger.info("Test CenterCrop")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = vision.Decode()
- # 3 images [375, 500] [600, 500] [512, 512]
- center_crop_op = vision.CenterCrop([height, width])
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=center_crop_op)
- # Compare with expected md5 from images
- filename = "center_crop_01_result.npz"
- save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_center_crop_comp(height=375, width=375, plot=False):
- """
- Test CenterCrop between python and c image augmentation
- """
- logger.info("Test CenterCrop")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = vision.Decode()
- center_crop_op = vision.CenterCrop([height, width])
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=center_crop_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- transforms = [
- py_vision.Decode(),
- py_vision.CenterCrop([height, width]),
- py_vision.ToTensor()
- ]
- transform = py_vision.ComposeOp(transforms)
- data2 = data2.map(input_columns=["image"], operations=transform())
-
- image_c_cropped = []
- image_py_cropped = []
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- c_image = item1["image"]
- py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- # Note: The images aren't exactly the same due to rounding error
- assert diff_mse(py_image, c_image) < 0.001
- image_c_cropped.append(c_image.copy())
- image_py_cropped.append(py_image.copy())
- if plot:
- visualize_list(image_c_cropped, image_py_cropped, visualize_mode=2)
-
-
- def test_crop_grayscale(height=375, width=375):
- """
- Test that centercrop works with pad and grayscale images
- """
-
- # Note: image.transpose performs channel swap to allow py transforms to
- # work with c transforms
- transforms = [
- py_vision.Decode(),
- py_vision.Grayscale(1),
- py_vision.ToTensor(),
- (lambda image: (image.transpose(1, 2, 0) * 255).astype(np.uint8))
- ]
-
- transform = py_vision.ComposeOp(transforms)
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(input_columns=["image"], operations=transform())
-
- # If input is grayscale, the output dimensions should be single channel
- crop_gray = vision.CenterCrop([height, width])
- data1 = data1.map(input_columns=["image"], operations=crop_gray)
-
- for item1 in data1.create_dict_iterator():
- c_image = item1["image"]
-
- # Check that the image is grayscale
- assert (c_image.ndim == 3 and c_image.shape[2] == 1)
-
-
- def test_center_crop_errors():
- """
- Test that CenterCropOp errors with bad input
- """
- try:
- test_center_crop_op(16777216, 16777216)
- except RuntimeError as e:
- assert "Unexpected error. CenterCropOp padding size is too big, it's more than 3 times the original size." in \
- str(e)
-
-
- if __name__ == "__main__":
- test_center_crop_op(600, 600, plot=True)
- test_center_crop_op(300, 600)
- test_center_crop_op(600, 300)
- test_center_crop_md5()
- test_center_crop_comp(plot=True)
- test_crop_grayscale()
|