|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- """ test Communicate """
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
- from mindspore.communication._comm_helper import Backend
- from mindspore.communication.management import HCCL_WORLD_COMM_GROUP, NCCL_WORLD_COMM_GROUP, GlobalComm, init
- from mindspore.nn import Dense
- from mindspore.nn import Momentum
- from mindspore.nn import ReLU
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.ops.operations.comm_ops import AllReduce, AllGather, _AlltoAll, ReduceOp, ReduceScatter
- from mindspore.ops.operations.comm_ops import Broadcast
-
- # pylint: disable=W0212
- # W0212: protected-access
-
- tag = 0
-
- init("hccl")
-
-
- class AllReduceNet(nn.Cell):
- """AllReduceNet definition"""
-
- def __init__(self, input_channel, out_channel, op):
- super(AllReduceNet, self).__init__()
- self.dense = Dense(input_channel, out_channel)
- self.reduce = AllReduce(op)
- self.relu = ReLU()
-
- def construct(self, x):
- x = self.dense(x)
- x = self.reduce(x)
- return self.relu(x)
-
-
- class BroadCastNet(nn.Cell):
- """BroadCastNet definition"""
-
- def __init__(self, input_channel, out_channel):
- super(BroadCastNet, self).__init__()
- self.dense = Dense(input_channel, out_channel)
- self.broadcast = Broadcast(0)
-
- def construct(self, x):
- x, = self.broadcast((x,))
- x = self.dense(x)
- return x
-
-
- class AllGatherNet(nn.Cell):
- """AllGatherNet definition"""
-
- def __init__(self, input_channel, out_channel):
- super(AllGatherNet, self).__init__()
- self.dense = Dense(input_channel, out_channel)
- if GlobalComm.BACKEND is Backend.HCCL:
- self.allgather = AllGather(group=HCCL_WORLD_COMM_GROUP)
- elif GlobalComm.BACKEND is Backend.NCCL:
- self.allgather = AllGather(group=NCCL_WORLD_COMM_GROUP)
- else:
- self.allgather = AllGather()
-
- self.relu = ReLU()
-
- def construct(self, x):
- x = self.dense(x)
- x = self.allgather(x)
- return self.relu(x)
-
-
- class ReduceScatterNet(nn.Cell):
- """ReduceScatterNet definition"""
-
- def __init__(self, input_channel, out_channel, op):
- super(ReduceScatterNet, self).__init__()
- self.dense = Dense(input_channel, out_channel)
- self.reducescatter = ReduceScatter(op)
- self.relu = ReLU()
-
- def construct(self, x):
- x = self.dense(x)
- x = self.reducescatter(x)
- return self.relu(x)
-
-
- class AlltoAllNet(nn.Cell):
- """AlltoAllNet definition"""
-
- def __init__(self, input_channel, out_channel):
- super(AlltoAllNet, self).__init__()
- self.dense = Dense(input_channel, out_channel)
- self.alltoall = _AlltoAll(1, 0, 1)
- self.relu = ReLU()
-
- def construct(self, x):
- x = self.dense(x)
- x = self.alltoall(x)
- return self.relu(x)
-
-
- def run_allreduce(op):
- """run_allreduce"""
- context.set_context(mode=context.GRAPH_MODE)
- input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
- label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
- network = AllReduceNet(2, 1, op)
- loss_fn = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
- learning_rate=0.1,
- momentum=0.9)
- network = WithLossCell(network, loss_fn)
- network = TrainOneStepCell(network, optimizer)
- _executor.compile(network, input_tensor, label_tensor)
-
-
- def test_allreduce():
- """test_allreduce"""
- context.set_context(mode=context.GRAPH_MODE)
- run_allreduce(ReduceOp.SUM)
- run_allreduce(ReduceOp.MAX)
- run_allreduce(ReduceOp.MIN)
-
-
- def test_allgather():
- """test_allgather"""
- context.set_context(mode=context.GRAPH_MODE)
- input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
- label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
- network = AllGatherNet(2, 1)
- loss_fn = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
- learning_rate=0.1,
- momentum=0.9)
- network = WithLossCell(network, loss_fn)
- network = TrainOneStepCell(network, optimizer)
- _executor.compile(network, input_tensor, label_tensor)
-
-
- def run_reducescatter(op):
- """run_reducescatter"""
- context.set_context(mode=context.GRAPH_MODE)
- input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
- label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
- network = ReduceScatterNet(2, 1, op)
- loss_fn = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
- learning_rate=0.1,
- momentum=0.9)
- network = WithLossCell(network, loss_fn)
- network = TrainOneStepCell(network, optimizer)
- _executor.compile(network, input_tensor, label_tensor)
-
-
- def test_reducescatter():
- """test_reducescatter"""
- context.set_context(mode=context.GRAPH_MODE)
- run_reducescatter(ReduceOp.SUM)
-
-
- def test_broadcast():
- """test_broadcast"""
- context.set_context(mode=context.GRAPH_MODE)
- input_tensor_1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
- label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
- network = BroadCastNet(2, 1)
- loss_fn = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
- learning_rate=0.1,
- momentum=0.9)
- network = WithLossCell(network, loss_fn)
- network = TrainOneStepCell(network, optimizer)
- _executor.compile(network, input_tensor_1, label_tensor)
-
-
- def test_alltoall():
- """test_alltoall"""
- context.set_context(mode=context.GRAPH_MODE)
- input_tensor = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]], dtype=np.float32))
- label_tensor = Tensor(np.array([[1.2], [2.2]], dtype=np.float32))
- network = AlltoAllNet(2, 1)
- loss_fn = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()),
- learning_rate=0.1,
- momentum=0.9)
- network = WithLossCell(network, loss_fn)
- network = TrainOneStepCell(network, optimizer)
- _executor.compile(network, input_tensor, label_tensor)
|