|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- '''Remove after MindData merge to MindSpore '''
- import numpy as np
-
- from mindspore import Tensor
-
-
- class MindData:
- """ Stub for MindData """
-
- def __init__(self, size=None, batch_size=None, repeat_count=1,
- np_types=None, output_shapes=None, input_indexs=()):
- self._size = size
- self._batch_size = batch_size
- self._repeat_count = repeat_count
- self._np_types = np_types
- self._output_shapes = output_shapes
- self._input_indexs = input_indexs
- self._iter_num = 0
-
- def get_dataset_size(self):
- return self._size
-
- def get_repeat_count(self):
- return self._repeat_count
-
- def get_batch_size(self):
- return self._batch_size
-
- def output_types(self):
- return self._np_types
-
- def output_shapes(self):
- return self._output_shapes
-
- @property
- def input_indexs(self):
- return self._input_indexs
-
- def device_que(self, send_epoch_end=True):
- self.queue_name = '6ba41974-209e-11ea-88b0-a24efeb2c736'
- self.send_epoch_end = send_epoch_end
- return self
-
- def create_tuple_iterator(self):
- return self.__iter__()
-
- def send(self, num_epochs=-1):
- pass
-
- def stop_send(self):
- pass
-
- def __len__(self):
- return self._size
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self._size < self._iter_num:
- raise StopIteration
- self._iter_num += 1
- next_value = []
- for shape, typ in zip(self._output_shapes, self._np_types):
- next_value.append(Tensor(np.ndarray(shape, typ)))
-
- return tuple(next_value)
-
- def next(self):
- return self.__next__()
-
- def reset(self):
- self._iter_num = 0
|